2,185 research outputs found

    Tsallis entropy approach to radiotherapy treatments

    Full text link
    The biological effect of one single radiation dose on a living tissue has been described by several radiobiological models. However, the fractionated radiotherapy requires to account for a new magnitude: time. In this paper we explore the biological consequences posed by the mathematical prolongation of a model to fractionated treatment. Nonextensive composition rules are introduced to obtain the survival fraction and equivalent physical dose in terms of a time dependent factor describing the tissue trend towards recovering its radioresistance (a kind of repair coefficient). Interesting (known and new) behaviors are described regarding the effectiveness of the treatment which is shown to be fundamentally bound to this factor. The continuous limit, applicable to brachytherapy, is also analyzed in the framework of nonextensive calculus. Also here a coefficient arises that rules the time behavior. All the results are discussed in terms of the clinical evidence and their major implications are highlighted.Comment: 6 figures, accepted for publication to Physica

    Learning models of camera control for imitation in football matches

    No full text
    In this paper, we present ongoing work towards a system capable of learning from and imitating the movement of a trained cameraman and his director covering a football match. Useful features such as the pitch and the movement of players in the scene are detected using various computer vision techniques. In simulation, a robotic camera trains its own internal model for how it can affect these features. The movement of a real cameraman in an actual football game can be imitated by using this internal model

    Band gap control via tuning of inversion degree in CdIn2_2S4_4 spinel

    Get PDF
    Based on theoretical arguments we propose a possible route for controlling the band-gap in the promising photovoltaic material CdIn2_2S4_4. Our \textit{ab initio} calculations show that the experimental degree of inversion in this spinel (fraction of tetrahedral sites occupied by In) corresponds approximately to the equilibrium value given by the minimum of the theoretical inversion free energy at a typical synthesis temperature. Modification of this temperature, or of the cooling rate after synthesis, is then expected to change the inversion degree, which in turn sensitively tunes the electronic band-gap of the solid, as shown here by accurate screened hybrid functional calculations.Comment: In press in Applied Physics Letters (2012); 4 pages, 2 figures, 1 tabl

    Benign Bilateral Adenomyoepithelioma of the Mammary Gland in a Ring-tailed Lemur (Lemur catta)

    Get PDF
    Naturally occurring mammary tumours are uncommon in prosimians. A 20-year-old female ring-tailed lemur (Lemur catta) developed bilateral enlargement of the mammary glands. Surgical removal revealed that both masses were comprised of multiple nodules and cystic areas that entirely replaced the normal glands. Histologically, a benign neoplastic biphasic cellular proliferation, composed of luminal–epithelial and basal–myoepithelial components, was identified. Immunohistochemical analysis for expression of cytokeratin (CK) AE1/AE3, CK7, CK5 + 8, CK14, vimentin, p63 and 14-3-3σ highlighted the biphasic nature of the neoplasm. A low mitotic count, low Ki67 labelling index, expression of oestrogen receptor-α, lack of expression of human epidermal growth factor receptor and a 3-year disease-free period without recurrence supported the benign nature of the tumour. Macroscopically, histologically and immunohistochemically this neoplasm resembled benign adenomyoepithelioma of the breast in women. This is the first complete report of a naturally occurring mammary tumour in a ring-tailed lemur

    Modeling pion and proton total cross-sections at LHC

    Get PDF
    To settle the question whether the growth with energy is universal for different hadronic total cross-sections, we present results from theoretical models for pion-proton, proton-proton and proton-antiproton total cross-sections. We show that present and planned experiments at LHC can differentiate between different models, all of which are consistent with presently available (lower energy) data. This study is also relevant for the analysis of those very high energy cosmic ray data which require reliable pion-proton total cross-sections as seeds. A preliminary study of the total pion-pion cross-sections is also made.Comment: 18 pages, 5 figures, submitted to Physics Letters
    • …
    corecore