72 research outputs found
Writing and Reading antiferromagnetic MnAu: N\'eel spin-orbit torques and large anisotropic magnetoresistance
Antiferromagnets are magnetically ordered materials which exhibit no net
moment and thus are insensitive to magnetic fields. Antiferromagnetic
spintronics aims to take advantage of this insensitivity for enhanced
stability, while at the same time active manipulation up to the natural THz
dynamic speeds of antiferromagnets is possible, thus combining exceptional
storage density and ultra-fast switching. However, the active manipulation and
read-out of the N\'eel vector (staggered moment) orientation is challenging.
Recent predictions have opened up a path based on a new spin-orbit torque,
which couples directly to the N\'eel order parameter. This N\'eel spin-orbit
torque was first experimentally demonstrated in a pioneering work using
semimetallic CuMnAs. Here we demonstrate for MnAu, a good conductor with a
high ordering temperature suitable for applications, reliable and reproducible
switching using current pulses and readout by magnetoresistance measurements.
The symmetry of the torques agrees with theoretical predictions and a large
read-out magnetoresistance effect of more than ~ is reproduced by
ab initio transport calculations.Comment: 5 pages, 4 figure
Concepts of antiferromagnetic spintronics
Antiferromagnetic spintronics is an emerging research field whose focus is on the electrical, optical or other means of control of the antiferromagnetic order parameter and its utility in information technology devices. An example of recently discovered new concepts is the Néel spin-orbit torque which allows for the antiferromagnetic order parameter to be controlled by an electrical current in common microelectronic circuits. In this review we discuss the utility of antiferromagnets as active and supporting materials for spintronics, the interplay of antiferromagnetic spintronics with other modern research fields in condensed matter physics, and its utility in future "More than Moore" information technologies
High antiferromagnetic domain wall velocity induced by Néel spin-orbit torques
We demonstrate the possibility to drive an antiferromagnetic domain wall at high velocities by fieldlike Néel spin-orbit torques. Such torques arise from current-induced local fields that alternate their orientation on each sublattice of the antiferromagnet and whose orientation depends primarily on the current direction, giving them their fieldlike character. The domain wall velocities that can be achieved by this mechanism are 2 orders of magnitude greater than the ones in ferromagnets. This arises from the efficiency of the staggered spin-orbit fields to couple to the order parameter and from the exchange-enhanced phenomena in
antiferromagnetic texture dynamics, which leads to a low domain wall effective mass and the absence of a Walker breakdown limit. In addition, because of its nature, the staggered spin-orbit field can lift the degeneracy between two 180° rotated states in a collinear antiferromagnet, and it provides a force that can move such walls and control the switching of the states
Laser-driven quantum magnonics and THz dynamics of the order parameter in antiferromagnets
The impulsive generation of two-magnon modes in antiferromagnets by
femtosecond optical pulses, so-called femto-nanomagnons, leads to coherent
longitudinal oscillations of the antiferromagnetic order parameter that cannot
be described by a thermodynamic Landau-Lifshitz approach. We argue that this
dynamics is triggered as a result of a laser-induced modification of the
exchange interaction. In order to describe the oscillations we have formulated
a quantum mechanical description in terms of magnon pair operators and coherent
states. Such an approach allowed us to} derive an effective macroscopic
equation of motion for the temporal evolution of the antiferromagnetic order
parameter. An implication of the latter is that the photo-induced spin dynamics
represents a macroscopic entanglement of pairs of magnons with femtosecond
period and nanometer wavelength. By performing magneto-optical pump-probe
experiments with 10 femtosecond resolution in the cubic KNiF and the
uniaxial KNiF collinear Heisenberg antiferromagnets, we observed
coherent oscillations at the frequency of 22 THz and 16 THz, respectively. The
detected frequencies as a function of the temperature ideally fit the
two-magnon excitation up to the N\'eel point. The experimental signals are
described as dynamics of magnetic linear dichroism due to longitudinal
oscillations of the antiferromagnetic vector.Comment: 25 pages, 10 figure
Evidence of non-degenerated, non-reciprocal and ultra-fast spin-waves in the canted antiferromagnet {\alpha}-Fe2O3
Spin-waves in antiferromagnets hold the prospects for the development of
faster, less power-hungry electronics, as well as new physics based on
spin-superfluids and coherent magnon-condensates. For both these perspectives,
addressing electrically coherent antiferromagnetic spin-waves is of importance,
a prerequisite that has so far been elusive, because unlike ferromagnets,
antiferromagnets couple weakly to radiofrequency fields. Here, we demonstrate
the electrical detection of ultra-fast non-reciprocal spin-waves in the
dipolar-exchange regime of a canted antiferromagnet. Using time-of-flight
spin-wave spectroscopy on hematite (alpha-Fe2O3), we find that the magnon wave
packets can propagate as fast as 30 km/s for reciprocal bulk spin-wave modes
and up to 10 km/s for surface-spin waves propagating parallel to the
antiferromagnetic N\'eel vector. The electrical detection of coherent
non-reciprocal antiferromagnetic spin waves holds makes hematite a versatile
platform where most of the magnonic concepts developed for ferromagnet can be
adapted paving the way for the development antiferromagnetic and
altermagnet-based magnonic devices
Magnetoelastic nature of solid oxygen epsilon-phase structure
For a long time a crystal structure of high-pressure epsilon-phase of solid
oxygen was a mistery. Basing on the results of recent experiments that have
solved this riddle we show that the magnetic and crystal structure of
epsilon-phase can be explained by strong exchange interactions of
antiferromagnetic nature. The singlet state implemented on quaters of O2
molecules has the minimal exchange energy if compared to other possible singlet
states (dimers, trimers). Magnetoelastic forces that arise from the spatial
dependence of the exchange integral give rise to transformation of 4(O2)
rhombuses into the almost regular quadrates. Antiferromagnetic character of the
exchange interactions stabilizes distortion of crystal lattice in epsilon-phase
and impedes such a distortion in long-range alpha- and delta-phases.Comment: 11 pages, 4 figures, Changes: corrected typos, reference to the
recent paper is adde
- …