455 research outputs found

    Semiclassical Description of Tunneling in Mixed Systems: The Case of the Annular Billiard

    Full text link
    We study quantum-mechanical tunneling between symmetry-related pairs of regular phase space regions that are separated by a chaotic layer. We consider the annular billiard, and use scattering theory to relate the splitting of quasi-degenerate states quantized on the two regular regions to specific paths connecting them. The tunneling amplitudes involved are given a semiclassical interpretation by extending the billiard boundaries to complex space and generalizing specular reflection to complex rays. We give analytical expressions for the splittings, and show that the dominant contributions come from {\em chaos-assisted}\/ paths that tunnel into and out of the chaotic layer.Comment: 4 pages, uuencoded postscript file, replaces a corrupted versio

    Effective Hamiltonians for some highly frustrated magnets

    Full text link
    In prior work, the authors developed a method of degenerate perturbation theory about the Ising limit to derive an effective Hamiltonian describing quantum fluctuations in a half-polarized magnetization plateau on the pyrochlore lattice. Here, we extend this formulation to an arbitrary lattice of corner sharing simplexes of qq sites, at a fraction (q−2k)/q(q-2k)/q of the saturation magnetization, with 0<k<q0<k<q. We present explicit effective Hamiltonians for the examples of the checkerboard, kagome, and pyrochlore lattices. The consequent ground states in these cases for k=1k=1 are also discussed.Comment: 10 pages, 2 figures,. Conference proceedings for Highly Frustrated Magnetism 200

    Incremental Optimization Transfer Algorithms: Application to Transmission Tomography

    Full text link
    No convergent ordered subsets (OS) type image reconstruction algorithms for transmission tomography have been proposed to date. In contrast, in emission tomography, there are two known families of convergent OS algorithms: methods that use relaxation parameters (Ahn and Fessler, 2003), and methods based on the incremental expectation maximization (EM) approach (Hsiao et al., 2002). This paper generalizes the incremental EM approach by introducing a general framework that we call “incremental optimization transfer.” Like incremental EM methods, the proposed algorithms accelerate convergence speeds and ensure global convergence (to a stationary point) under mild regularity conditions without requiring inconvenient relaxation parameters. The general optimization transfer framework enables the use of a very broad family of non-EM surrogate functions. In particular, this paper provides the first convergent OS-type algorithm for transmission tomography. The general approach is applicable to both monoenergetic and polyenergetic transmission scans as well as to other image reconstruction problems. We propose a particular incremental optimization transfer method for (nonconcave) penalized-likelihood (PL) transmission image reconstruction by using separable paraboloidal surrogates (SPS). Results show that the new “transmission incremental optimization transfer (TRIOT)” algorithm is faster than nonincremental ordinary SPS and even OS-SPS yet is convergent.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85800/1/Fessler200.pd

    Quantal Brownian Motion - Dephasing and Dissipation

    Full text link
    We analyze quantal Brownian motion in dd dimensions using the unified model for diffusion localization and dissipation, and Feynman-Vernon formalism. At high temperatures the propagator possess a Markovian property and we can write down an equivalent Master equation. Unlike the case of the Zwanzig-Caldeira-Leggett model, genuine quantum mechanical effects manifest themselves due to the disordered nature of the environment. Using Wigner picture of the dynamics we distinguish between two different mechanisms for destruction of coherence. The analysis of dephasing is extended to the low temperature regime by using a semiclassical strategy. Various results are derived for ballistic, chaotic, diffusive, both ergodic and non-ergodic motion. We also analyze loss of coherence at the limit of zero temperature and clarify the limitations of the semiclassical approach. The condition for having coherent effect due to scattering by low-frequency fluctuations is also pointed out. It is interesting that the dephasing rate can be either larger or smaller than the dissipation rate, depending on the physical circumstances.Comment: LaTex, 23 pages, 4 figures, published vesio

    Effective Coupling for Open Billiards

    Full text link
    We derive an explicit expression for the coupling constants of individual eigenstates of a closed billiard which is opened by attaching a waveguide. The Wigner time delay and the resonance positions resulting from the coupling constants are compared to an exact numerical calculation. Deviations can be attributed to evanescent modes in the waveguide and to the finite number of eigenstates taken into account. The influence of the shape of the billiard and of the boundary conditions at the mouth of the waveguide are also discussed. Finally we show that the mean value of the dimensionless coupling constants tends to the critical value when the eigenstates of the billiard follow random-matrix theory

    Convergent Incremental Optimization Transfer Algorithms: Application to Tomography

    Full text link
    No convergent ordered subsets (OS) type image reconstruction algorithms for transmission tomography have been proposed to date. In contrast, in emission tomography, there are two known families of convergent OS algorithms: methods that use relaxation parameters , and methods based on the incremental expectation-maximization (EM) approach . This paper generalizes the incremental EM approach by introducing a general framework, "incremental optimization transfer". The proposed algorithms accelerate convergence speeds and ensure global convergence without requiring relaxation parameters. The general optimization transfer framework allows the use of a very broad family of surrogate functions, enabling the development of new algorithms . This paper provides the first convergent OS-type algorithm for (nonconcave) penalized-likelihood (PL) transmission image reconstruction by using separable paraboloidal surrogates (SPS) which yield closed-form maximization steps. We found it is very effective to achieve fast convergence rates by starting with an OS algorithm with a large number of subsets and switching to the new "transmission incremental optimization transfer (TRIOT)" algorithm. Results show that TRIOT is faster in increasing the PL objective than nonincremental ordinary SPS and even OS-SPS yet is convergent.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85980/1/Fessler46.pd

    Coin Tossing as a Billiard Problem

    Full text link
    We demonstrate that the free motion of any two-dimensional rigid body colliding elastically with two parallel, flat walls is equivalent to a billiard system. Using this equivalence, we analyze the integrable and chaotic properties of this new class of billiards. This provides a demonstration that coin tossing, the prototypical example of an independent random process, is a completely chaotic (Bernoulli) problem. The related question of which billiard geometries can be represented as rigid body systems is examined.Comment: 16 pages, LaTe

    First Experimental Evidence for Chaos-Assisted Tunneling in a Microwave Annular Billiard

    Full text link
    We report on first experimental signatures for chaos-assisted tunneling in a two-dimensional annular billiard. Measurements of microwave spectra from a superconducting cavity with high frequency resolution are combined with electromagnetic field distributions experimentally determined from a normal conducting twin cavity with high spatial resolution to resolve eigenmodes with properly identified quantum numbers. Distributions of so-called quasi-doublet splittings serve as basic observables for the tunneling between whispering gallery type modes localized to congruent, but distinct tori which are coupled weakly to irregular eigenstates associated with the chaotic region in phase space.Comment: 5 pages RevTex, 5 low-resolution figures (high-resolution figures: http://linac.ikp.physik.tu-darmstadt.de/heiko/chaospub.html, to be published in Phys. Rev. Let

    Ray and wave chaos in asymmetric resonant optical cavities

    Full text link
    Optical resonators are essential components of lasers and other wavelength-sensitive optical devices. A resonator is characterized by a set of modes, each with a resonant frequency omega and resonance width Delta omega=1/tau, where tau is the lifetime of a photon in the mode. In a cylindrical or spherical dielectric resonator, extremely long-lived resonances are due to `whispering gallery' modes in which light circulates around the perimeter trapped by total internal reflection. These resonators emit light isotropically. Recently, a new category of asymmetric resonant cavities (ARCs) has been proposed in which substantial shape deformation leads to partially chaotic ray dynamics. This has been predicted to give rise to a universal, frequency-independent broadening of the whispering-gallery resonances, and highly anisotropic emission. Here we present solutions of the wave equation for ARCs which confirm many aspects of the earlier ray-optics model, but also reveal interesting frequency-dependent effects characteristic of quantum chaos. For small deformations the lifetime is controlled by evanescent leakage, the optical analogue of quantum tunneling. We find that the lifetime is much shortened by a process known as `chaos-assisted tunneling'. In contrast, for large deformations (~10%) some resonances are found to have longer lifetimes than predicted by the ray chaos model due to `dynamical localization'.Comment: 4 pages RevTeX with 7 Postscript figure
    • 

    corecore