7 research outputs found

    Expansion in SL_d(Z/qZ), q arbitrary

    Full text link
    Let S be a fixed finite symmetric subset of SL_d(Z), and assume that it generates a Zariski-dense subgroup G. We show that the Cayley graphs of pi_q(G) with respect to the generating set pi_q(S) form a family of expanders, where pi_q is the projection map Z->Z/qZ

    Growth in solvable subgroups of GL_r(Z/pZ)

    Get PDF
    Let K=Z/pZK=Z/pZ and let AA be a subset of \GL_r(K) such that is solvable. We reduce the study of the growth of $A$ under the group operation to the nilpotent setting. Specifically we prove that either $A$ grows rapidly (meaning $|A\cdot A\cdot A|\gg |A|^{1+\delta}$), or else there are groups $U_R$ and $S$, with $S/U_R$ nilpotent such that $A_k\cap S$ is large and $U_R\subseteq A_k$, where $k$ is a bounded integer and $A_k = \{x_1 x_2...b x_k : x_i \in A \cup A^{-1} \cup {1}}$. The implied constants depend only on the rank $r$ of $\GL_r(K)$. When combined with recent work by Pyber and Szab\'o, the main result of this paper implies that it is possible to draw the same conclusions without supposing that is solvable.Comment: 46 pages. This version includes revisions recommended by an anonymous referee including, in particular, the statement of a new theorem, Theorem

    Expansion in perfect groups

    Full text link
    Let Ga be a subgroup of GL_d(Q) generated by a finite symmetric set S. For an integer q, denote by Ga_q the subgroup of Ga consisting of the elements that project to the unit element mod q. We prove that the Cayley graphs of Ga/Ga_q with respect to the generating set S form a family of expanders when q ranges over square-free integers with large prime divisors if and only if the connected component of the Zariski-closure of Ga is perfect.Comment: 62 pages, no figures, revision based on referee's comments: new ideas are explained in more details in the introduction, typos corrected, results and proofs unchange

    Immunological adjuvants: Help still needed here

    No full text

    Cryptographic Hash Functions and Expander Graphs: The End of the Story?

    No full text
    Cayley hash functions are a family of cryptographic hash functions constructed from the Cayley graphs of non-Abelian finite groups. Their security relies on the hardness of mathematical problems related to long-standing conjectures in graph and group theory. We recall the Cayley hash design and known results on the underlying problems. We then describe related open problems, including the cryptanalysis of relevant parameters as well as new applications to cryptography and outside, assuming either that the problem is “hard” or easy.SCOPUS: cp.kInternational Conference on The New Codebreakers - Essays Dedicated to David Kahn on the Occasion of His 85th Birthday, 2010; LuxembourgISBN: 978-366249300-7Volume Editors: Quisquater J.-J.Ryan P.Y.A.Naccache D.Publisher: Springer Verlaginfo:eu-repo/semantics/publishe
    corecore