5 research outputs found

    Development of a Bead-Based Multiplex Genotyping Method for Diagnostic Characterization of HPV Infection

    Get PDF
    The accurate genotyping of human papillomavirus (HPV) is clinically important because the oncogenic potential of HPV is dependent on specific genotypes. Here, we described the development of a bead-based multiplex HPV genotyping (MPG) method which is able to detect 20 types of HPV (15 high-risk HPV types 16, 18, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68 and 5 low-risk HPV types 6, 11, 40, 55, 70) and evaluated its accuracy with sequencing. A total of 890 clinical samples were studied. Among these samples, 484 were HPV positive and 406 were HPV negative by consensus primer (PGMY09/11) directed PCR. The genotyping of 484 HPV positive samples was carried out by the bead-based MPG method. The accuracy was 93.5% (95% CI, 91.0–96.0), 80.1% (95% CI, 72.3–87.9) for single and multiple infections, respectively, while a complete type mismatch was observed only in one sample. The MPG method indiscriminately detected dysplasia of several cytological grades including 71.8% (95% CI, 61.5–82.3) of ASCUS (atypical squamous cells of undetermined significance) and more specific for high grade lesions. For women with HSIL (high grade squamous intraepithelial lesion) and SCC diagnosis, 32 women showed a PPV (positive predictive value) of 77.3% (95% CI, 64.8–89.8). Among women >40 years of age, 22 women with histological cervical cancer lesions showed a PPV of 88% (95% CI, 75.3–100). Of the highest risk HPV types including HPV-16, 18 and 31 positive women of the same age groups, 34 women with histological cervical cancer lesions showed a PPV of 77.3% (95% CI, 65.0–89.6). Taken together, the bead-based MPG method could successfully detect high-grade lesions and high-risk HPV types with a high degree of accuracy in clinical samples

    Phylogeography of the endangered rosewood Dalbergia nigra (Fabaceae): insights into the evolutionary history and conservation of the Brazilian Atlantic Forest

    No full text
    The Brazilian rosewood (Dalbergia nigra) is an endangered tree endemic to the central Brazilian Atlantic Forest, one of the world's most threatened biomes. The population diversity, phylogeographic structure and demographic history of this species were investigated using the variation in the chloroplast DNA (cpDNA) sequences of 185 individuals from 19 populations along the geographical range of the species. Fifteen haplotypes were detected in the analysis of 1297 bp from two non-coding sequences, trnV-trnM and trnL. We identified a strong genetic structure (FST=0.62, P<0.0001), with a latitudinal separation into three phylogeographic groups. The two northernmost groups showed evidence of having maintained historically larger populations than the southernmost group. Estimates of divergence times between these groups pointed to vicariance events in the Middle Pleistocene (ca. 350 000–780 000 years ago). The recurrence of past climatic changes in the central part of the Atlantic forest, with cycles of forest expansion and contraction, may have led to repeated vicariance events, resulting in the genetic differentiation of these groups. Based on comparisons among the populations of large reserves and small, disturbed fragments of the same phylogeographic group, we also found evidence of recent anthropogenic effects on genetic diversity. The results were also analysed with the aim of contributing to the conservation of D. nigra. We suggest that the three phylogeographic groups could be considered as three distinct management units. Based on the genetic diversity and uniqueness of the populations, we also indicate priority areas for conservation

    Pharmacokinetic and Pharmacodynamic Aspects of Peyote and Mescaline: Clinical and Forensic Repercussions

    No full text
    corecore