23,682 research outputs found

    Double-Edge Factor Graphs: Definition, Properties, and Examples

    Full text link
    Some of the most interesting quantities associated with a factor graph are its marginals and its partition sum. For factor graphs \emph{without cycles} and moderate message update complexities, the sum-product algorithm (SPA) can be used to efficiently compute these quantities exactly. Moreover, for various classes of factor graphs \emph{with cycles}, the SPA has been successfully applied to efficiently compute good approximations to these quantities. Note that in the case of factor graphs with cycles, the local functions are usually non-negative real-valued functions. In this paper we introduce a class of factor graphs, called double-edge factor graphs (DE-FGs), which allow local functions to be complex-valued and only require them, in some suitable sense, to be positive semi-definite. We discuss various properties of the SPA when running it on DE-FGs and we show promising numerical results for various example DE-FGs, some of which have connections to quantum information processing.Comment: Submitte

    Estimating the Information Rate of a Channel with Classical Input and Output and a Quantum State (Extended Version)

    Full text link
    We consider the problem of transmitting classical information over a time-invariant channel with memory. A popular class of time-invariant channels with memory are finite-state-machine channels, where a \emph{classical} state evolves over time and governs the relationship between the classical input and the classical output of the channel. For such channels, various techniques have been developed for estimating and bounding the information rate. In this paper we consider a class of time-invariant channels where a \emph{quantum} state evolves over time and governs the relationship between the classical input and the classical output of the channel. We propose algorithms for estimating and bounding the information rate of such channels. In particular, we discuss suitable graphical models for doing the relevant computations.Comment: This is an extended version of a paper that appears in Proc. 2017 IEEE International Symposium on Information Theory, Aachen, Germany, June 201

    Bounding and Estimating the Classical Information Rate of Quantum Channels with Memory

    Full text link
    We consider the scenario of classical communication over a finite-dimensional quantum channel with memory using a separable-state input ensemble and local output measurements. We propose algorithms for estimating the information rate of such communication setups, along with algorithms for bounding the information rate based on so-called auxiliary channels. Some of the algorithms are extensions of their counterparts for (classical) finite-state-machine channels. Notably, we discuss suitable graphical models for doing the relevant computations. Moreover, the auxiliary channels are learned in a data-driven approach; i.e., only input/output sequences of the true channel are needed, but not the channel model of the true channel.Comment: This work has been submitted to the IEEE Transactions on Information Theory for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    The Microscopic Structure of Adsorbed Water on Hydrophobic Surfaces under Ambient Conditions

    Get PDF
    The interaction of water vapor with hydrophobic surfaces is poorly understood. We utilize graphene templating to preserve and visualize the microscopic structures of adsorbed water on hydrophobic surfaces. Three well-defined surfaces [H–Si(111), graphite, and functionalized mica] were investigated, and water was found to adsorb as nanodroplets (~10–100 nm in size) on all three surfaces under ambient conditions. The adsorbed nanodroplets were closely associated with atomic-scale surface defects and step-edges and wetted all the hydrophobic substrates with contact angles < ~10°, resulting in total water adsorption that was similar to what is found for hydrophilic surfaces. These results point to the significant differences between surface processes at the atomic/nanometer scales and in the macroscopic world

    Recycle-GAN: Unsupervised Video Retargeting

    Full text link
    We introduce a data-driven approach for unsupervised video retargeting that translates content from one domain to another while preserving the style native to a domain, i.e., if contents of John Oliver's speech were to be transferred to Stephen Colbert, then the generated content/speech should be in Stephen Colbert's style. Our approach combines both spatial and temporal information along with adversarial losses for content translation and style preservation. In this work, we first study the advantages of using spatiotemporal constraints over spatial constraints for effective retargeting. We then demonstrate the proposed approach for the problems where information in both space and time matters such as face-to-face translation, flower-to-flower, wind and cloud synthesis, sunrise and sunset.Comment: ECCV 2018; Please refer to project webpage for videos - http://www.cs.cmu.edu/~aayushb/Recycle-GA

    Non-Markovian coherence dynamics of driven spin boson model: damped quantum beat or large amplitude coherence oscillation

    Full text link
    The dynamics of driven spin boson model is studied analytically by means of the perturbation approach based on a unitary transformation. We gave the analytical expression for the population difference and coherence of the two level system. The results show that in the weak driven case, the population difference present damped coherent oscillation (single or double frequency) and the frequencies depend on the initial state. The coherence exhibit damped oscillation with Rabi frequency. When driven field is strong enough, the population difference exhibit undamped large-amplitude coherent oscillation. The results easily return to the two extreme cases without dissipation or without periodic driven.Comment: 15 pages,5 figure

    Controlling a triangular flexible formation of autonomous agents

    Get PDF
    In formation control, triangular formations consisting of three autonomous agents serve as a class of benchmarks that can be used to test and compare the performances of different controllers. We present an algorithm that combines the advantages of both position- and distance-based gradient descent control laws. For example, only two pairs of neighboring agents need to be controlled, agents can work in their own local frame of coordinates and the orientation of the formation with respect to a global frame of coordinates is not prescribed. We first present a novel technique based on adding artificial biases to neighboring agents' range sensors such that their eventual positions correspond to a collinear configuration. Right after, a small modification in the bias terms by introducing a prescribed rotation matrix will allow the control of the bearing of the neighboring agents.Comment: 7 pages, accepted in the 20th World Congress of the International Federation of Automatic Control (IFAC
    • …
    corecore