5,204 research outputs found

    Trustee: Full Privacy Preserving Vickrey Auction on top of Ethereum

    Get PDF
    The wide deployment of tokens for digital assets on top of Ethereum implies the need for powerful trading platforms. Vickrey auctions have been known to determine the real market price of items as bidders are motivated to submit their own monetary valuations without leaking their information to the competitors. Recent constructions have utilized various cryptographic protocols such as ZKP and MPC, however, these approaches either are partially privacy-preserving or require complex computations with several rounds. In this paper, we overcome these limits by presenting Trustee as a Vickrey auction on Ethereum which fully preserves bids' privacy at relatively much lower fees. Trustee consists of three components: a front-end smart contract deployed on Ethereum, an Intel SGX enclave, and a relay to redirect messages between them. Initially, the enclave generates an Ethereum account and ECDH key-pair. Subsequently, the relay publishes the account's address and ECDH public key on the smart contract. As a prerequisite, bidders are encouraged to verify the authenticity and security of Trustee by using the SGX remote attestation service. To participate in the auction, bidders utilize the ECDH public key to encrypt their bids and submit them to the smart contract. Once the bidding interval is closed, the relay retrieves the encrypted bids and feeds them to the enclave that autonomously generates a signed transaction indicating the auction winner. Finally, the relay submits the transaction to the smart contract which verifies the transaction's authenticity and the parameters' consistency before accepting the claimed auction winner. As part of our contributions, we have made a prototype for Trustee available on Github for the community to review and inspect it. Additionally, we analyze the security features of Trustee and report on the transactions' gas cost incurred on Trustee smart contract.Comment: Presented at Financial Cryptography and Data Security 2019, 3rd Workshop on Trusted Smart Contract

    Comparing phenomenological recipes with a microscopic model for the electric amplitude in strangeness photoproduction

    Full text link
    Corrections to the Born approximation in photo-induced strangeness production off a proton are calculated in a semi-realistic microscopic model. The vertex corrections and internal contributions to the amplitude of the γp→K+Λ\gamma p \to K^+ \Lambda reaction are included on the one-loop level. Different gauge-invariant phenomenological prescriptions for the modification of the Born contribution via the introduction of form factors and contact terms are discussed. In particular, it is shown that the popular minimal-substitution method of Ohta corresponds to a special limit of the more realistic approach.Comment: 10 pages, 6 figures in the tex

    The messy merger of a large satellite and a Milky Way-like galaxy

    Get PDF
    Aims. About 10 billion years ago the Milky Way merged with a massive satellite, Gaia-Enceladus. To gain insight into the properties of its debris we analyse in detail a suite of simulations that includes an experiment that produces a good match to the kinematics of nearby halo stars inferred from Gaia data. Methods. We compare the kinematic distributions of stellar particles in the simulations and study the distribution of debris in orbital angular momentum, eccentricity, and energy, and its relation to the mass loss history of the simulated satellite. Results. We confirm that Gaia-Enceladus probably fell in on a retrograde, 30° inclination orbit. We find that while 75% of the debris in our preferred simulation has high eccentricity (> 0.8), roughly 9% has eccentricity lower than 0.6. Star particles lost early have large retrograde motions, and a subset of these have low eccentricity. Such stars would be expected to have lower metallicities as they stem from the outskirts of the satellite, and hence naively they could be confused with debris associated with a separate system. These considerations seem to apply to some of the stars from the postulated Sequoia galaxy. Conclusions. When a massive disc galaxy undergoes a merger event, it leaves behind debris with a complex phase-space structure, a wide range of orbital properties, and a range of chemical abundances. Observationally, this results in substructures with very different properties, which can be misinterpreted as implying independent progeny. Detailed chemical abundances of large samples of stars and tailored hydrodynamical simulations are critical to resolving such conundrums
    • …
    corecore