19 research outputs found

    The Environmental Impacts of Radio Frequency and Power Line Communication for Advanced Metering Infrastructures in Smart Grids

    Get PDF
    In the neighborhood area network (NAN), the advanced metering infrastructure (AMI) enables a bidirectional connection between the smart meter (SM) and the data concentrator (DC). Sensors, such as smart meter nodes or environmental sensor nodes, play a crucial role in measuring and transmitting data to central units for advanced monitoring, management, and analysis of energy consumption. Wired and wireless communication technologies are used to implement the AMI-NAN. This paper delves into a novel approach for optimizing the choice of communication medium, air for radio frequency (RF) or power lines for power line communication (PLC), between the SM and DC in the context of the AMI-NAN. The authors methodically select the specific technologies, RF and NB-PLC (narrowband power line communication), and meticulously characterize their attributes. Then, a comparative analysis spanning rural, urban, and industrial settings is conducted to evaluate the proposed method. The overall reliability performance of the AMI-NAN system requires a packet error rate (PER) lower than 10%. To this end, an efficient approach is introduced to assess and enhance the reliability of NB-PLC and RF for AMI-NAN applications. Simulation results demonstrate that wireless communication is the optimal choice for the rural scenario, especially for a signal-to-noise ratio (SNR) lower than 25 dB. However, in urban environments characterized by higher SNR values and moderately dense networks, NB-PLC gains prominence. In denser networks, it outperforms wireless communication, exhibiting a remarkable 10 dB gain for a bit error rate (BER) of 10−3. Moreover, in industrial zones characterized by intricate network topologies and non-linear loads, the power line channel emerges as the optimal choice for data transmission

    A homozygous MED11 C-terminal variant causes a lethal neurodegenerative disease

    Get PDF
    Purpose: The mediator (MED) multisubunit-complex modulates the activity of the transcriptional machinery, and genetic defects in different MED subunits (17, 20, 27) have been implicated in neurologic diseases. In this study, we identified a recurrent homozygous variant in MED11 (c.325C>T; p.Arg109Ter) in 7 affected individuals from 5 unrelated families. Methods: To investigate the genetic cause of the disease, exome or genome sequencing were performed in 5 unrelated families identified via different research networks and Matchmaker Exchange. Deep clinical and brain imaging evaluations were performed by clinical pediatric neurologists and neuroradiologists. The functional effect of the candidate variant on both MED11 RNA and protein was assessed using reverse transcriptase polymerase chain reaction and western blotting using fibroblast cell lines derived from 1 affected individual and controls and through computational approaches. Knockouts in zebrafish were generated using clustered regularly interspaced short palindromic repeats/Cas9. Results: The disease was characterized by microcephaly, profound neurodevelopmental impairment, exaggerated startle response, myoclonic seizures, progressive widespread neurodegeneration, and premature death. Functional studies on patient-derived fibroblasts did not show a loss of protein function but rather disruption of the C-terminal of MED11, likely impairing binding to other MED subunits. A zebrafish knockout model recapitulates key clinical phenotypes. Conclusion: Loss of the C-terminal of MED subunit 11 may affect its binding efficiency to other MED subunits, thus implicating the MED-complex stability in brain development and neurodegeneration

    Bi-allelic genetic variants in the translational GTPases GTPBP1 and GTPBP2 cause a distinct identical neurodevelopmental syndrome

    Get PDF
    The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2)-related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi-quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss-of-function (LoF) impact of the disease-associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTP-binding proteins in CNS development across species
    corecore