12,436 research outputs found
Screened Perturbation Theory to Three Loops
The thermal physics of a massless scalar field with a phi^4 interaction is
studied within screened perturbation theory (SPT). In this method the
perturbative expansion is reorganized by adding and subtracting a mass term in
the lagrangian. We consider several different mass prescriptions that
generalize the one-loop gap equation to two-loop order. We calculate the
pressure and entropy to three-loop order and the screening mass to two-loop
order. In contrast to the weak-coupling expansion, the SPT-improved
approximations appear to converge even for rather large values of the coupling
constant.Comment: 30 pages, 10 figure
Effective potential for Polyakov loops from a center symmetric effective theory in three dimensions
We present lattice simulations of a center symmetric dimensionally reduced
effective field theory for SU(2) Yang Mills which employ thermal Wilson lines
and three-dimensional magnetic fields as fundamental degrees of freedom. The
action is composed of a gauge invariant kinetic term, spatial gauge fields and
a potential for the Wilson line which includes a "fuzzy" bag term to generate
non-perturbative fluctuations. The effective potential for the Polyakov loop is
extracted from the simulations including all modes of the loop as well as for
cooled configuration where the hard modes have been averaged out. The former is
found to exhibit a non-analytic contribution while the latter can be described
by a mean-field like ansatz with quadratic and quartic terms, plus a
Vandermonde potential which depends upon the location within the phase diagram.Comment: 10 pages, 22 figures, v2: published version (minor clarifications,
update of reference list
Chiral transition in a magnetic field and at finite baryon density
We consider the quark-meson model with two quark flavors in a constant
external magnetic field at finite temperature and finite baryon
chemical potential . We calculate the full renormalized effective
potential to one-loop order in perturbation theory. We study the system in the
large- limit, where we treat the bosonic modes at tree level. It is shown
that the system exhibits dynamical chiral symmetry breaking, i. e. that an
arbitrarily weak magnetic field breaks chiral symmetry dynamically, in
agreement with earlier calculations using the NJL model. We study the influence
on the phase transition of the fermionic vacuum fluctuations. For strong
magnetic fields, and in the chiral limit, the transition
is first order in the entire plane if vacuum fluctuations are not
included and second order if they are included. At the physical point, the
transition is a crossover for with and without vacuum fluctuations.Comment: 11 pages. 5figs. V2: fixed a few typos and added refs. Submitted to
PRD. V3: Added refs and substantial revision of tex
Mass Expansions of Screened Perturbation Theory
The thermodynamics of massless phi^4-theory is studied within screened
perturbation theory (SPT). In this method the perturbative expansion is
reorganized by adding and subtracting a mass term in the Lagrangian. We
analytically calculate the pressure and entropy to three-loop order and the
screening mass to two-loop order, expanding in powers of m/T. The truncated
m/T-expansion results are compared with numerical SPT results for the pressure,
entropy and screening mass which are accurate to all orders in m/T. It is shown
that the m/T-expansion converges quickly and provides an accurate description
of the thermodynamic functions for large values of the coupling constant.Comment: 22 pages, 10 figure
Solution to the 3-Loop -Derivable Approximation for Massless Scalar Thermodynamics
We develop a systematic method for solving the 3-loop -derivable
approximation to the thermodynamics of the massless field theory. The
method involves expanding sum-integrals in powers of and m/T, where g is
the coupling constant, m is a variational mass parameter, and T is the
temperature. The problem is reduced to one with the single variational
parameter m by solving the variational equations order-by-order in and
m/T. At the variational point, there are ultraviolet divergences of order
that cannot be removed by any renormalization of the coupling constant. We
define a finite thermodynamic potential by truncating at order in g
and m/T. The associated thermodynamic functions seem to be perturbatively
stable and insensitive to variations in the renormalization scale.Comment: 57 pages, 10 figure
Out-of-plane instability and electron-phonon contribution to s- and d-wave pairing in high-temperature superconductors; LDA linear-response calculation for doped CaCuO2 and a generic tight-binding model
The equilibrium structure, energy bands, phonon dispersions, and s- and
d-channel electron-phonon interactions (EPIs) are calculated for the
infinite-layer superconductor CaCuO2 doped with 0.24 holes per CuO2. The LDA
and the linear-response full-potential LMTO method were used. In the
equilibrium structure, oxygen is found to buckle slightly out of the plane and,
as a result, the characters of the energy bands near EF are found to be similar
to those of other optimally doped HTSCs. For the EPI we find lambda(s)=0.4, in
accord with previous LDA calculations for YBa2Cu3O7. This supports the common
belief that the EPI mechanism alone is insufficient to explain HTSC.
Lambda(x^2-y^2) is found to be positive and nearly as large as lambda(s). This
is surprising and indicates that the EPI could enhance some other d-wave
pairing mechanism. Like in YBa2Cu3O7, the buckling modes contribute
significantly to the EPI, although these contributions are proportional to the
static buckling and would vanish for flat planes. These numerical results can
be understood from a generic tight-binding model originally derived from the
LDA bands of YBa2Cu3O7. In the future, the role of anharmonicity of the
buckling-modes and the influence of the spin-fluctuations should be
investigated.Comment: 19 pages, 9 Postscript figures, Late
Estimation in a growth study with irregular measurement times
Between 1982 and 1988 a growth study was carried out at the Division of Pediatric Oncology of the University Hospital of Groningen. A special feature of the project was that sample sizes are small and that ages at entry may be very different. In addition the intended design was not fully complied with. This paper highlights some aspects of the statistical analysis which is based on (1) reference scores, (2) statistical procedures allowing for an irregular pattern of measurement times caused by missing data and shifted measurement times
Electrical activity of carbon-hydrogen centers in Si
The electrical activity of Cs-H defects in Si has been investigated in a combined modeling and experimental study. High-resolution Laplace capacitance spectroscopy with the uniaxial stress technique has been used to measure the stress-energy tensor and the results are compared with theoretical modeling. At low temperatures, implanted H is trapped as a negative-U center with a donor level in the upper half of the gap. However, at higher temperatures, H migrates closer to the carbon impurity and the donor level falls, crossing the gap. At the same time, an acceptor level is introduced into the upper gap making the defect a positive-U center
First principles theoretical studies of half-metallic ferromagnetism in CrTe
Using full-potential linear augmented plane wave method (FP-LAPW) and the
density functional theory, we have carried out a systematic investigation of
the electronic, magnetic, and cohesive properties of the chalcogenide CrTe in
three competing structures: rock-salt (RS), zinc blende (ZB) and the NiAs-type
(NA) hexagonal. Although the ground state is of NA structure, RS and ZB are
interesting in that these fcc-based structures, which can possibly be grown on
many semiconductor substrates, exhibit half-metallic phases above some critical
values of the lattice parameter. We find that the NA structure is not
half-metallic at its equilibrium volume, while both ZB and RS structures are.
The RS structure is more stable than the ZB, with an energy that is lower by
0.25 eV/atom. While confirming previous results on the half-metallic phase in
ZB structure, we provide hitherto unreported results on the half-metallic RS
phase, with a gap in the minority channel and a magnetic moment of 4.0
per formula unit. A comparison of total energies for the
ferromagnetic (FM), non-magnetic (NM), and antiferromagnetic (AFM)
configurations shows the lowest energy configuration to be FM for CrTe in all
the three structures. The FP-LAPW calculations are supplemented by linear
muffin-tin orbital (LMTO) calculations using both local density approximation
(LDA) and LDA+U method. The exchange interactions and the Curie temperatures
calculated via the linear response method in ZB and RS CrTe are compared over a
wide range of the lattice parameter. The calculated Curie temperatures for the
RS phase are consistently higher than those for the ZB phase.Comment: 11 pages, 14 figure
- …
