10,996 research outputs found

    Chiral transition in a magnetic field and at finite baryon density

    Full text link
    We consider the quark-meson model with two quark flavors in a constant external magnetic field BB at finite temperature TT and finite baryon chemical potential μB\mu_B. We calculate the full renormalized effective potential to one-loop order in perturbation theory. We study the system in the large-NcN_c limit, where we treat the bosonic modes at tree level. It is shown that the system exhibits dynamical chiral symmetry breaking, i. e. that an arbitrarily weak magnetic field breaks chiral symmetry dynamically, in agreement with earlier calculations using the NJL model. We study the influence on the phase transition of the fermionic vacuum fluctuations. For strong magnetic fields, ∣qB∣∼5mπ2|qB|\sim5m_{\pi}^2 and in the chiral limit, the transition is first order in the entire μB−T\mu_B-T plane if vacuum fluctuations are not included and second order if they are included. At the physical point, the transition is a crossover for μB=0\mu_B=0 with and without vacuum fluctuations.Comment: 11 pages. 5figs. V2: fixed a few typos and added refs. Submitted to PRD. V3: Added refs and substantial revision of tex

    Effective potential for Polyakov loops from a center symmetric effective theory in three dimensions

    Full text link
    We present lattice simulations of a center symmetric dimensionally reduced effective field theory for SU(2) Yang Mills which employ thermal Wilson lines and three-dimensional magnetic fields as fundamental degrees of freedom. The action is composed of a gauge invariant kinetic term, spatial gauge fields and a potential for the Wilson line which includes a "fuzzy" bag term to generate non-perturbative fluctuations. The effective potential for the Polyakov loop is extracted from the simulations including all modes of the loop as well as for cooled configuration where the hard modes have been averaged out. The former is found to exhibit a non-analytic contribution while the latter can be described by a mean-field like ansatz with quadratic and quartic terms, plus a Vandermonde potential which depends upon the location within the phase diagram.Comment: 10 pages, 22 figures, v2: published version (minor clarifications, update of reference list

    Screened Perturbation Theory to Three Loops

    Full text link
    The thermal physics of a massless scalar field with a phi^4 interaction is studied within screened perturbation theory (SPT). In this method the perturbative expansion is reorganized by adding and subtracting a mass term in the lagrangian. We consider several different mass prescriptions that generalize the one-loop gap equation to two-loop order. We calculate the pressure and entropy to three-loop order and the screening mass to two-loop order. In contrast to the weak-coupling expansion, the SPT-improved approximations appear to converge even for rather large values of the coupling constant.Comment: 30 pages, 10 figure

    Estimation in a growth study with irregular measurement times

    Get PDF
    Between 1982 and 1988 a growth study was carried out at the Division of Pediatric Oncology of the University Hospital of Groningen. A special feature of the project was that sample sizes are small and that ages at entry may be very different. In addition the intended design was not fully complied with. This paper highlights some aspects of the statistical analysis which is based on (1) reference scores, (2) statistical procedures allowing for an irregular pattern of measurement times caused by missing data and shifted measurement times

    Dose and time relations in Hg(++)-induced tubular necrosis and regeneration.

    Get PDF
    Mercuric chloride is a well-known human and animal nephrotoxicant. Previous studies have demonstrated an inverse relationship between dose size and relative whole-body retention of mercury after oral administration of mercuric chloride to mice. The present study indicates that this inverse relationship is caused by a dose-related induction of kidney damage leading to increasing leakage of mercury through the kidneys. Histopathologic investigation revealed extensive necrosis of the proximal tubules in kidneys from mice exposed to 100 mumole HgCl2/kg or higher doses. Moreover, maximum renal damage occurred between days 2 and 3 after administration. The renal damage was followed by regeneration, which was observed between days 3 and 7 at increasing dose levels up to 100 mumole HgCl2/kg. The amount of glutathione and the glutathione peroxidase activity in kidney decreased with increasing doses of mercuric chloride. The reduced glutathione peroxidase activity was due to a reduction in selenium-dependent glutathione peroxidase activity. The level of lipid peroxidation was not changed by increasing doses of mercuric chloride, and hence was not a primary toxic mechanism in acute nephrotoxicity induced by mercuric chloride

    Variational study of the antiferromagnetic insulating phase of V2O3 based on Nth order Muffin-Tin-Orbitals

    Full text link
    Motivated by recent results of NNth order muffin-tin orbital (NMTO) implementation of the density functional theory (DFT), we re-examine low-temperature ground-state properties of the anti-ferromagnetic insulating phase of vanadium sesquioxide V2_2O3_3. The hopping matrix elements obtained by the NMTO-downfolding procedure differ significantly from those previously obtained in electronic structure calculations and imply that the in-plane hopping integrals are as important as the out-of-plane ones. We use the NMTO hopping matrix elements as input and perform a variational study of the ground state. We show that the formation of stable molecules throughout the crystal is not favorable in this case and that the experimentally observed magnetic structure can still be obtained in the atomic variational regime. However the resulting ground state (two t2gt_{2g} electrons occupying the degenerate ege_g doublet) is in contrast with many well established experimental observations. We discuss the implications of this finding in the light of the non-local electronic correlations certainly present in this compound.Comment: 7 pages, 2 figure

    Magnetic properties of PdAs2O6: a dilute spin system with an unusually high N\'eel temperature

    Full text link
    The crystal structure and magnetic ordering pattern of PdAs2O6 were investigated by neutron powder diffraction. While the magnetic structure of PdAs2O6 is identical to the one of its isostructural 3d-homologue NiAs2O6, its N\'{e}el temperature (140 K) is much higher than the one of NiAs2O6 (30 K). This is surprising in view of the long distance and indirect exchange path between the magnetic Pd2+^{2+} ions. Density functional calculations yield insight into the electronic structure and the geometry of the exchange-bond network of both PdAs2O6 and NiAs2O6, and provide a semi-quantitative explanation of the large amplitude difference between their primary exchange interaction parameters

    Coastal flooding in Denmark – future outlook

    Get PDF

    Inducing spin-dependent tunneling to probe magnetic correlations in optical lattices

    Full text link
    We suggest a simple experimental method for probing antiferromagnetic spin correlations of two-component Fermi gases in optical lattices. The method relies on a spin selective Raman transition to excite atoms of one spin species to their first excited vibrational mode where the tunneling is large. The resulting difference in the tunneling dynamics of the two spin species can then be exploited, to reveal the spin correlations by measuring the number of doubly occupied lattice sites at a later time. We perform quantum Monte Carlo simulations of the spin system and solve the optical lattice dynamics numerically to show how the timed probe can be used to identify antiferromagnetic spin correlations in optical lattices.Comment: 5 pages, 5 figure
    • …
    corecore