601 research outputs found
Anomalous diffusion with log-periodic modulation in a selected time interval
On certain self-similar substrates the time behavior of a random walk is
modulated by logarithmic periodic oscillations on all time scales. We show that
if disorder is introduced in a way that self-similarity holds only in average,
the modulating oscillations are washed out but subdiffusion remains as in the
perfect self-similar case. Also, if disorder distribution is appropriately
chosen the oscillations are localized in a selected time interval. Both the
overall random walk exponent and the period of the oscillations are
analytically obtained and confirmed by Monte Carlo simulations.Comment: 4 pages, 5 figure
Facilitated diffusion of proteins on chromatin
We present a theoretical model of facilitated diffusion of proteins in the
cell nucleus. This model, which takes into account the successive
binding/unbinding events of proteins to DNA, relies on a fractal description of
the chromatin which has been recently evidenced experimentally. Facilitated
diffusion is shown quantitatively to be favorable for a fast localization of a
target locus by a transcription factor, and even to enable the minimization of
the search time by tuning the affinity of the transcription factor with DNA.
This study shows the robustness of the facilitated diffusion mechanism, invoked
so far only for linear conformations of DNA.Comment: 4 pages, 4 figures, accepted versio
Anisotropic anomalous diffusion modulated by log-periodic oscillations
We introduce finite ramified self-affine substrates in two dimensions with a
set of appropriate hopping rates between nearest-neighbor sites, where the
diffusion of a single random walk presents an anomalous {\it anisotropic}
behavior modulated by log-periodic oscillations. The anisotropy is revealed by
two different random walk exponents, and , in the {\it x} and
{\it y} direction, respectively. The values of these exponents, as well as the
period of the oscillation, are analytically obtained and confirmed by Monte
Carlo simulations.Comment: 7 pages, 7 figure
A Method of Intervals for the Study of Diffusion-Limited Annihilation, A + A --> 0
We introduce a method of intervals for the analysis of diffusion-limited
annihilation, A+A -> 0, on the line. The method leads to manageable diffusion
equations whose interpretation is intuitively clear. As an example, we treat
the following cases: (a) annihilation in the infinite line and in infinite
(discrete) chains; (b) annihilation with input of single particles, adjacent
particle pairs, and particle pairs separated by a given distance; (c)
annihilation, A+A -> 0, along with the birth reaction A -> 3A, on finite rings,
with and without diffusion.Comment: RevTeX, 13 pages, 4 figures, 1 table. References Added, and some
other minor changes, to conform with final for
Exact calculations of first-passage quantities on recursive networks
We present general methods to exactly calculate mean-first passage quantities
on self-similar networks defined recursively. In particular, we calculate the
mean first-passage time and the splitting probabilities associated to a source
and one or several targets; averaged quantities over a given set of sources
(e.g., same-connectivity nodes) are also derived. The exact estimate of such
quantities highlights the dependency of first-passage processes with respect to
the source-target distance, which has recently revealed to be a key parameter
to characterize transport in complex media. We explicitly perform calculations
for different classes of recursive networks (finitely ramified fractals,
scale-free (trans)fractals, non-fractals, mixtures between fractals and
non-fractals, non-decimable hierarchical graphs) of arbitrary size. Our
approach unifies and significantly extends the available results in the field.Comment: 16 pages, 10 figure
Log-periodic modulation in one-dimensional random walks
We have studied the diffusion of a single particle on a one-dimensional
lattice. It is shown that, for a self-similar distribution of hopping rates,
the time dependence of the mean-square displacement follows an anomalous power
law modulated by logarithmic periodic oscillations. The origin of this
modulation is traced to the dependence on the length of the diffusion
coefficient. Both the random walk exponent and the period of the modulation are
analytically calculated and confirmed by Monte Carlo simulations.Comment: 6 pages, 7 figure
On the Role of Global Warming on the Statistics of Record-Breaking Temperatures
We theoretically study long-term trends in the statistics of record-breaking
daily temperatures and validate these predictions using Monte Carlo simulations
and data from the city of Philadelphia, for which 126 years of daily
temperature data is available. Using extreme statistics, we derive the number
and the magnitude of record temperature events, based on the observed Gaussian
daily temperatures distribution in Philadelphia, as a function of the number of
elapsed years from the start of the data. We further consider the case of
global warming, where the mean temperature systematically increases with time.
We argue that the current warming rate is insufficient to measurably influence
the frequency of record temperature events over the time range of the
observations, a conclusion that is supported by numerical simulations and the
Philadelphia temperature data.Comment: 11 pages, 6 figures, 2-column revtex4 format. For submission to
Journal of Climate. Revised version has some new results and some errors
corrected. Reformatted for Journal of Climate. Second revision has an added
reference. In the third revision one sentence that explains the simulations
is reworded for clarity. New revision 10/3/06 has considerable additions and
new results. Revision on 11/8/06 contains a number of minor corrections and
is the version that will appear in Phys. Rev.
Projecting the Kondo Effect: Theory of the Quantum Mirage
A microscopic theory is developed for the projection (quantum mirage) of the
Kondo resonance from one focus of an elliptic quantum corral to the other
focus. The quantum mirage is shown to be independent of the size and the shape
of the ellipse, and experiences \lambda_F/4 oscillations (\lambda_F is the
surface-band Fermi wavelength) with an increasing semimajor axis length. We
predict an oscillatory behavior of the mirage as a function of a weak magnetic
field applied perpendicular to the sample.Comment: 4 pages 2 figures include
Dynamics of continuous-time quantum walks in restricted geometries
We study quantum transport on finite discrete structures and we model the
process by means of continuous-time quantum walks. A direct and effective
comparison between quantum and classical walks can be attained based on the
average displacement of the walker as a function of time. Indeed, a fast growth
of the average displacement can be advantageously exploited to build up
efficient search algorithms. By means of analytical and numerical
investigations, we show that the finiteness and the inhomogeneity of the
substrate jointly weaken the quantum walk performance. We further highlight the
interplay between the quantum-walk dynamics and the underlying topology by
studying the temporal evolution of the transfer probability distribution and
the lower bound of long time averages.Comment: 25 pages, 13 figure
Quantum walk approach to search on fractal structures
We study continuous-time quantum walks mimicking the quantum search based on
Grover's procedure. This allows us to consider structures, that is, databases,
with arbitrary topological arrangements of their entries. We show that the
topological structure of the database plays a crucial role by analyzing, both
analytically and numerically, the transition from the ground to the first
excited state of the Hamiltonian associated with different (fractal)
structures. Additionally, we use the probability of successfully finding a
specific target as another indicator of the importance of the topological
structure.Comment: 15 pages, 14 figure
- …