601 research outputs found

    Anomalous diffusion with log-periodic modulation in a selected time interval

    Full text link
    On certain self-similar substrates the time behavior of a random walk is modulated by logarithmic periodic oscillations on all time scales. We show that if disorder is introduced in a way that self-similarity holds only in average, the modulating oscillations are washed out but subdiffusion remains as in the perfect self-similar case. Also, if disorder distribution is appropriately chosen the oscillations are localized in a selected time interval. Both the overall random walk exponent and the period of the oscillations are analytically obtained and confirmed by Monte Carlo simulations.Comment: 4 pages, 5 figure

    Facilitated diffusion of proteins on chromatin

    Full text link
    We present a theoretical model of facilitated diffusion of proteins in the cell nucleus. This model, which takes into account the successive binding/unbinding events of proteins to DNA, relies on a fractal description of the chromatin which has been recently evidenced experimentally. Facilitated diffusion is shown quantitatively to be favorable for a fast localization of a target locus by a transcription factor, and even to enable the minimization of the search time by tuning the affinity of the transcription factor with DNA. This study shows the robustness of the facilitated diffusion mechanism, invoked so far only for linear conformations of DNA.Comment: 4 pages, 4 figures, accepted versio

    Anisotropic anomalous diffusion modulated by log-periodic oscillations

    Full text link
    We introduce finite ramified self-affine substrates in two dimensions with a set of appropriate hopping rates between nearest-neighbor sites, where the diffusion of a single random walk presents an anomalous {\it anisotropic} behavior modulated by log-periodic oscillations. The anisotropy is revealed by two different random walk exponents, νx\nu_x and νy\nu_y, in the {\it x} and {\it y} direction, respectively. The values of these exponents, as well as the period of the oscillation, are analytically obtained and confirmed by Monte Carlo simulations.Comment: 7 pages, 7 figure

    A Method of Intervals for the Study of Diffusion-Limited Annihilation, A + A --> 0

    Full text link
    We introduce a method of intervals for the analysis of diffusion-limited annihilation, A+A -> 0, on the line. The method leads to manageable diffusion equations whose interpretation is intuitively clear. As an example, we treat the following cases: (a) annihilation in the infinite line and in infinite (discrete) chains; (b) annihilation with input of single particles, adjacent particle pairs, and particle pairs separated by a given distance; (c) annihilation, A+A -> 0, along with the birth reaction A -> 3A, on finite rings, with and without diffusion.Comment: RevTeX, 13 pages, 4 figures, 1 table. References Added, and some other minor changes, to conform with final for

    Exact calculations of first-passage quantities on recursive networks

    Full text link
    We present general methods to exactly calculate mean-first passage quantities on self-similar networks defined recursively. In particular, we calculate the mean first-passage time and the splitting probabilities associated to a source and one or several targets; averaged quantities over a given set of sources (e.g., same-connectivity nodes) are also derived. The exact estimate of such quantities highlights the dependency of first-passage processes with respect to the source-target distance, which has recently revealed to be a key parameter to characterize transport in complex media. We explicitly perform calculations for different classes of recursive networks (finitely ramified fractals, scale-free (trans)fractals, non-fractals, mixtures between fractals and non-fractals, non-decimable hierarchical graphs) of arbitrary size. Our approach unifies and significantly extends the available results in the field.Comment: 16 pages, 10 figure

    Log-periodic modulation in one-dimensional random walks

    Full text link
    We have studied the diffusion of a single particle on a one-dimensional lattice. It is shown that, for a self-similar distribution of hopping rates, the time dependence of the mean-square displacement follows an anomalous power law modulated by logarithmic periodic oscillations. The origin of this modulation is traced to the dependence on the length of the diffusion coefficient. Both the random walk exponent and the period of the modulation are analytically calculated and confirmed by Monte Carlo simulations.Comment: 6 pages, 7 figure

    On the Role of Global Warming on the Statistics of Record-Breaking Temperatures

    Full text link
    We theoretically study long-term trends in the statistics of record-breaking daily temperatures and validate these predictions using Monte Carlo simulations and data from the city of Philadelphia, for which 126 years of daily temperature data is available. Using extreme statistics, we derive the number and the magnitude of record temperature events, based on the observed Gaussian daily temperatures distribution in Philadelphia, as a function of the number of elapsed years from the start of the data. We further consider the case of global warming, where the mean temperature systematically increases with time. We argue that the current warming rate is insufficient to measurably influence the frequency of record temperature events over the time range of the observations, a conclusion that is supported by numerical simulations and the Philadelphia temperature data.Comment: 11 pages, 6 figures, 2-column revtex4 format. For submission to Journal of Climate. Revised version has some new results and some errors corrected. Reformatted for Journal of Climate. Second revision has an added reference. In the third revision one sentence that explains the simulations is reworded for clarity. New revision 10/3/06 has considerable additions and new results. Revision on 11/8/06 contains a number of minor corrections and is the version that will appear in Phys. Rev.

    Projecting the Kondo Effect: Theory of the Quantum Mirage

    Full text link
    A microscopic theory is developed for the projection (quantum mirage) of the Kondo resonance from one focus of an elliptic quantum corral to the other focus. The quantum mirage is shown to be independent of the size and the shape of the ellipse, and experiences \lambda_F/4 oscillations (\lambda_F is the surface-band Fermi wavelength) with an increasing semimajor axis length. We predict an oscillatory behavior of the mirage as a function of a weak magnetic field applied perpendicular to the sample.Comment: 4 pages 2 figures include

    Dynamics of continuous-time quantum walks in restricted geometries

    Full text link
    We study quantum transport on finite discrete structures and we model the process by means of continuous-time quantum walks. A direct and effective comparison between quantum and classical walks can be attained based on the average displacement of the walker as a function of time. Indeed, a fast growth of the average displacement can be advantageously exploited to build up efficient search algorithms. By means of analytical and numerical investigations, we show that the finiteness and the inhomogeneity of the substrate jointly weaken the quantum walk performance. We further highlight the interplay between the quantum-walk dynamics and the underlying topology by studying the temporal evolution of the transfer probability distribution and the lower bound of long time averages.Comment: 25 pages, 13 figure

    Quantum walk approach to search on fractal structures

    Full text link
    We study continuous-time quantum walks mimicking the quantum search based on Grover's procedure. This allows us to consider structures, that is, databases, with arbitrary topological arrangements of their entries. We show that the topological structure of the database plays a crucial role by analyzing, both analytically and numerically, the transition from the ground to the first excited state of the Hamiltonian associated with different (fractal) structures. Additionally, we use the probability of successfully finding a specific target as another indicator of the importance of the topological structure.Comment: 15 pages, 14 figure
    • …
    corecore