7 research outputs found

    Identification and Characterization of Microsporidia from Fecal Samples of HIV-Positive Patients from Lagos, Nigeria

    Get PDF
    BACKGROUND: Microsporidia are obligate intracellular parasites that infect a broad range of vertebrates and invertebrates. They have been increasingly recognized as human pathogens in AIDS patients, mainly associated with a life-threatening chronic diarrhea and systemic disease. However, to date the global epidemiology of human microsporidiosis is poorly understood, and recent data suggest that the incidence of these pathogens is much higher than previously reported and may represent a neglected etiological agent of more common diseases indeed in immunocompetent individuals. To contribute to the knowledge of microsporidia molecular epidemiology in HIV-positive patients in Nigeria, the authors tested stool samples proceeding from patients with and without diarrhea. METHODOLOGY/PRINCIPAL FINDINGS: Stool samples from 193 HIV-positive patients with and without diarrhea (67 and 126 respectively) from Lagos (Nigeria) were investigated for the presence of microsporidia and Cryptosporidium using Weber's Chromotrope-based stain, Kinyoun stain, IFAT and PCR. The Weber stain showed 45 fecal samples (23.3%) with characteristic microsporidia spores, and a significant association of microsporidia with diarrhea was observed (O.R. = 18.2; CI: 95%). A similar result was obtained using Kinyoun stain, showing 44 (31,8%) positive samples with structures morphologically compatible with Cryptosporidium sp, 14 (31.8%) of them with infection mixed with microsporidia. The characterization of microsporidia species by IFAT and PCR allowed identification of Enterocytozoon bieneusi, Encephalitozoon intestinalis and E. cuniculi in 5, 2 and 1 samples respectively. The partial sequencing of the ITS region of the rRNA genes showed that the three isolates of E.bieneusi studied are included in Group I, one of which bears the genotype B. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this is the first report of microsporidia characterization in fecal samples from HIV-positive patients from Lagos, Nigeria. These results focus attention on the need to include microsporidial diagnosis in the management of HIV/AIDS infection in Nigeria, at the very least when other more common pathogens have not been detected

    Evaluation of an Immunofluorescent-Antibody Test Using Monoclonal Antibodies Directed against Enterocytozoon bieneusi and Encephalitozoon intestinalis for Diagnosis of Intestinal Microsporidiosis in Bamako (Mali)

    No full text
    A 2-month study was carried out in Mali to evaluate an immunofluorescent-antibody test (IFAT) using monoclonal probes specific for Enterocytozoon bieneusi or Encephalitozoon intestinalis. Sixty-one human immunodeficiency virus (HIV)-seropositive adult patients and 71 immunocompetent children were enrolled. Microsporidia were detected in stools from 8 of 61 patients (13.1%) seropositive for HIV. A single species, E. bieneusi, was identified. All the children were negative for microsporidia. The sensitivity and specificity of IFAT were 100% compared with those of PCR, which was used as the “gold standard.” Moreover, species identification by IFAT was more rapid and less expensive than that by PCR. These results show the suitability of IFAT for detection of microsporidia in developing countries

    Mitochondrial Reactive Oxygen Species Mediate GPCR–induced TACE/ADAM17-dependent Transforming Growth Factor-α Shedding

    Get PDF
    Epidermal growth factor receptor (EGFR) activation by GPCRs regulates many important biological processes. ADAM metalloprotease activity has been implicated as a key step in transactivation, yet the regulatory mechanisms are not fully understood. Here, we investigate the regulation of transforming growth factor-α (TGF-α) shedding by reactive oxygen species (ROS) through the ATP-dependent activation of the P2Y family of GPCRs. We report that ATP stimulates TGF-α proteolysis with concomitant EGFR activation and that this process requires TACE/ADAM17 activity in both murine fibroblasts and CHO cells. ATP-induced TGF-α shedding required calcium and was independent of Src family kinases and PKC and MAPK signaling. Moreover, ATP-induced TGF-α shedding was completely inhibited by scavengers of ROS, whereas calcium-stimulated shedding was partially inhibited by ROS scavenging. Hydrogen peroxide restored TGF-α shedding after calcium chelation. Importantly, we also found that ATP-induced shedding was independent of the cytoplasmic NADPH oxidase complex. Instead, mitochondrial ROS production increased in response to ATP and mitochondrial oxidative complex activity was required to activate TACE-dependent shedding. These results reveal an essential role for mitochondrial ROS in regulating GPCR-induced growth factor shedding
    corecore