54 research outputs found
Nonlinear Optics and Quantum Entanglement of Ultra-Slow Single Photons
Two light pulses propagating with ultra-slow group velocities in a coherently
prepared atomic gas exhibit dissipation-free nonlinear coupling of an
unprecedented strength. This enables a single-photon pulse to coherently
control or manipulate the quantum state of the other. Processes of this kind
result in generation of entangled states of radiation field and open up new
prospectives for quantum information processing
Ultra-Slow Light and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas
We report the observation of small group velocities of order 90 meters per
second, and large group delays of greater than 0.26 ms, in an optically dense
hot rubidium gas (~360 K). Media of this kind yield strong nonlinear
interactions between very weak optical fields, and very sharp spectral
features. The result is in agreement with previous studies on nonlinear
spectroscopy of dense coherent media
Gain Components in Autler-Townes Doublet from Quantum Interferences in Decay Channels
We consider non-degenerate pump-probe spectroscopy of V-systems under
conditions such that interference among decay channels is important. We
demonstrate how this interference can result in new gain features instead of
the usual absorption features. We relate this gain to the existence of a new
vacuum induced quasi-trapped-state. We further show how this also results in
large refractive index with low absorption.Comment: Total 8 pages, 6 figures, submitted to Physical Review
Controlling photons using electromagnetically induced transparency
It is well known that a dielectric medium can be used to manipulate properties of light pulses. However, optical absorption limits the extent of possible control: this is especially important for weak light pulses. Absorption in an opaque medium can be eliminated via quantum mechanical interference, an effect known as electromagnetically induced transparency. Theoretical and experimental work has demonstrated that this phenomenon can be used to slow down light pulses dramatically, or even bring them to a complete halt. Interactions between photons in such an atomic medium can be many orders of magnitude stronger than in conventional optical materials
Entangled Photons from Small Quantum Dots
We discuss level schemes of small quantum-dot turnstiles and their
applicability in the production of entanglement in two-photon emission. Due to
the large energy splitting of the single-electron levels, only one single
electron level and one single hole level can be made resonant with the levels
in the conduction band and valence band. This results in a model with nine
distinct levels, which are split by the Coulomb interactions. We show that the
optical selection rules are different for flat and tall cylindrically symmetric
dots, and how this affects the quality of the entanglement generated in the
decay of the biexciton state. The effect of charge carrier tunneling and of a
resonant cavity is included in the model.Comment: 10 pages, 8 figure
Parametric Self-Oscillation via Resonantly Enhanced Multiwave Mixing
We demonstrate an efficient nonlinear process in which Stokes and anti-Stokes
components are generated spontaneously in a Raman-like, near resonant media
driven by low power counter-propagating fields. Oscillation of this kind does
not require optical cavity and can be viewed as a spontaneous formation of
atomic coherence grating
Enhancement of Magneto-Optic Effects via Large Atomic Coherence
We utilize the generation of large atomic coherence to enhance the resonant
nonlinear magneto-optic effect by several orders of magnitude, thereby
eliminating power broadening and improving the fundamental signal-to-noise
ratio. A proof-of-principle experiment is carried out in a dense vapor of Rb
atoms. Detailed numerical calculations are in good agreement with the
experimental results. Applications such as optical magnetometry or the search
for violations of parity and time reversal symmetry are feasible
Anisotropic Vacuum Induced Interference in Decay Channels
We demonstrate how the anisotropy of the vacuum of the electromagnetic field
can lead to quantum interferences among the decay channels of close lying
states. Our key result is that interferences are given by the {\em scalar}
formed from the antinormally ordered electric field correlation tensor for the
anisotropic vacuum and the dipole matirx elements for the two transitions. We
present results for emission between two conducting plates as well as for a two
photon process involving fluorescence produced under coherent cw excitationComment: 6 pages with 2 figures, to appear in Phys. Rev. Lett. (tentative june
2000
Strongly interacting polaritons in coupled arrays of cavities
Observing quantum phenomena in strongly correlated many-particle systems is difficult because of the short length- and timescales involved. Exerting control over the state of individual elements within such a system is even more so, and represents a hurdle in the realization of quantum computing devices. Substantial progress has been achieved with arrays of Josephson junctions and cold atoms in optical lattices, where detailed control over collective properties is feasible, but addressing individual sites remains a challenge. Here we show that a system of polaritons held in an array of resonant optical cavities—which could be realized using photonic crystals or toroidal microresonators—can form a strongly interacting many-body system showing quantum phase transitions, where individual particles can be controlled and measured. The system also offers the possibility to generate attractive on-site potentials yielding highly entangled states and a phase with particles much more delocalized than in superfluids
- …