132 research outputs found
Fast, Simple Calcium Imaging Segmentation with Fully Convolutional Networks
Calcium imaging is a technique for observing neuron activity as a series of
images showing indicator fluorescence over time. Manually segmenting neurons is
time-consuming, leading to research on automated calcium imaging segmentation
(ACIS). We evaluated several deep learning models for ACIS on the Neurofinder
competition datasets and report our best model: U-Net2DS, a fully convolutional
network that operates on 2D mean summary images. U-Net2DS requires minimal
domain-specific pre/post-processing and parameter adjustment, and predictions
are made on full images at 9K images per minute. It
ranks third in the Neurofinder competition () and is the best model
to exclusively use deep learning. We also demonstrate useful segmentations on
data from outside the competition. The model's simplicity, speed, and quality
results make it a practical choice for ACIS and a strong baseline for more
complex models in the future.Comment: Accepted to 3rd Workshop on Deep Learning in Medical Image Analysis
(http://cs.adelaide.edu.au/~dlmia3/
3DQ: Compact Quantized Neural Networks for Volumetric Whole Brain Segmentation
Model architectures have been dramatically increasing in size, improving
performance at the cost of resource requirements. In this paper we propose 3DQ,
a ternary quantization method, applied for the first time to 3D Fully
Convolutional Neural Networks (F-CNNs), enabling 16x model compression while
maintaining performance on par with full precision models. We extensively
evaluate 3DQ on two datasets for the challenging task of whole brain
segmentation. Additionally, we showcase our method's ability to generalize on
two common 3D architectures, namely 3D U-Net and V-Net. Outperforming a variety
of baselines, the proposed method is capable of compressing large 3D models to
a few MBytes, alleviating the storage needs in space critical applications.Comment: Accepted to MICCAI 201
Volumetric Attention for 3D Medical Image Segmentation and Detection
A volumetric attention(VA) module for 3D medical image segmentation and
detection is proposed. VA attention is inspired by recent advances in video
processing, enables 2.5D networks to leverage context information along the z
direction, and allows the use of pretrained 2D detection models when training
data is limited, as is often the case for medical applications. Its integration
in the Mask R-CNN is shown to enable state-of-the-art performance on the Liver
Tumor Segmentation (LiTS) Challenge, outperforming the previous challenge
winner by 3.9 points and achieving top performance on the LiTS leader board at
the time of paper submission. Detection experiments on the DeepLesion dataset
also show that the addition of VA to existing object detectors enables a 69.1
sensitivity at 0.5 false positive per image, outperforming the best published
results by 6.6 points.Comment: Accepted by MICCAI 201
Tversky loss function for image segmentation using 3D fully convolutional deep networks
Fully convolutional deep neural networks carry out excellent potential for
fast and accurate image segmentation. One of the main challenges in training
these networks is data imbalance, which is particularly problematic in medical
imaging applications such as lesion segmentation where the number of lesion
voxels is often much lower than the number of non-lesion voxels. Training with
unbalanced data can lead to predictions that are severely biased towards high
precision but low recall (sensitivity), which is undesired especially in
medical applications where false negatives are much less tolerable than false
positives. Several methods have been proposed to deal with this problem
including balanced sampling, two step training, sample re-weighting, and
similarity loss functions. In this paper, we propose a generalized loss
function based on the Tversky index to address the issue of data imbalance and
achieve much better trade-off between precision and recall in training 3D fully
convolutional deep neural networks. Experimental results in multiple sclerosis
lesion segmentation on magnetic resonance images show improved F2 score, Dice
coefficient, and the area under the precision-recall curve in test data. Based
on these results we suggest Tversky loss function as a generalized framework to
effectively train deep neural networks
Automatic Brain Tumor Segmentation using Convolutional Neural Networks with Test-Time Augmentation
Automatic brain tumor segmentation plays an important role for diagnosis,
surgical planning and treatment assessment of brain tumors. Deep convolutional
neural networks (CNNs) have been widely used for this task. Due to the
relatively small data set for training, data augmentation at training time has
been commonly used for better performance of CNNs. Recent works also
demonstrated the usefulness of using augmentation at test time, in addition to
training time, for achieving more robust predictions. We investigate how
test-time augmentation can improve CNNs' performance for brain tumor
segmentation. We used different underpinning network structures and augmented
the image by 3D rotation, flipping, scaling and adding random noise at both
training and test time. Experiments with BraTS 2018 training and validation set
show that test-time augmentation helps to improve the brain tumor segmentation
accuracy and obtain uncertainty estimation of the segmentation results.Comment: 12 pages, 3 figures, MICCAI BrainLes 201
Early growth performances of various seed sources of black (Prunus serotina Erhr.) and wild cherry (Prunus avium L.) seedlings on low and high elevation sites in the western Black Sea Region of Turkey
The growth performances of one-year old seedlings of various black cherry (BC) and wild cherry (WC) seed sources (SSs) that were planted on low elevation sites (LES) and high elevation sites (HES) in the western Black Sea Region (BSR) of Turkey were assessed one and five years after planting (YAP). Significance between and within-species variations were found for seedling growth. On species basis, WC was superior to BC for seedling groundline diameter and height growth for the low elevation sites(LES) of one and five years after planting (YAP), whereas no substantial survival and growth differences were found between the species for the high elevation sites (HES) of five YAP. Generally, seedlings averaged a greater survival on the LES, when compared with those on the HES. Local WC SSs (Tefen, Yayla and Dirgine) demonstrated an enhanced seedling survival and growth on LES than the other SSs. Unlike the LES results, a collection of BC (Michigan 1 and Ukraine) and WC SSs (Dirgine, Germany, and Tefen) displayed the best seedling growth over five years. The HES seedlings frequently experienced diebacks and forking due to heavy snow fall and wildlife browsing. Selection of the local WC SSs was vital for the LES. However, BC SSs may present a potential for planting on the HES with harsher environmental conditions.Keywords: Black cherry, provenance test, seedling growth and survival, wild cherry
Uncertainty quantification in medical image segmentation with normalizing flows
Medical image segmentation is inherently an ambiguous task due to factors
such as partial volumes and variations in anatomical definitions. While in most
cases the segmentation uncertainty is around the border of structures of
interest, there can also be considerable inter-rater differences. The class of
conditional variational autoencoders (cVAE) offers a principled approach to
inferring distributions over plausible segmentations that are conditioned on
input images. Segmentation uncertainty estimated from samples of such
distributions can be more informative than using pixel level probability
scores. In this work, we propose a novel conditional generative model that is
based on conditional Normalizing Flow (cFlow). The basic idea is to increase
the expressivity of the cVAE by introducing a cFlow transformation step after
the encoder. This yields improved approximations of the latent posterior
distribution, allowing the model to capture richer segmentation variations.
With this we show that the quality and diversity of samples obtained from our
conditional generative model is enhanced. Performance of our model, which we
call cFlow Net, is evaluated on two medical imaging datasets demonstrating
substantial improvements in both qualitative and quantitative measures when
compared to a recent cVAE based model.Comment: 12 pages. Accepted to be presented at 11th International Workshop on
Machine Learning in Medical Imaging. Source code will be updated at
https://github.com/raghavian/cFlo
Learning Shape Priors for Robust Cardiac MR Segmentation from Multi-view Images
© 2019, Springer Nature Switzerland AG. Cardiac MR image segmentation is essential for the morphological and functional analysis of the heart. Inspired by how experienced clinicians assess the cardiac morphology and function across multiple standard views (i.e. long- and short-axis views), we propose a novel approach which learns anatomical shape priors across different 2D standard views and leverages these priors to segment the left ventricular (LV) myocardium from short-axis MR image stacks. The proposed segmentation method has the advantage of being a 2D network but at the same time incorporates spatial context from multiple, complementary views that span a 3D space. Our method achieves accurate and robust segmentation of the myocardium across different short-axis slices (from apex to base), outperforming baseline models (e.g. 2D U-Net, 3D U-Net) while achieving higher data efficiency. Compared to the 2D U-Net, the proposed method reduces the mean Hausdorff distance (mm) from 3.24 to 2.49 on the apical slices, from 2.34 to 2.09 on the middle slices and from 3.62 to 2.76 on the basal slices on the test set, when only 10% of the training data was used
Recurrent Neural Networks for Aortic Image Sequence Segmentation with Sparse Annotations
Segmentation of image sequences is an important task in medical image analysis, which enables clinicians to assess the anatomy and function of moving organs. However, direct application of a segmentation algorithm to each time frame of a sequence may ignore the temporal continuity inherent in the sequence. In this work, we propose an image sequence segmentation algorithm by combining a fully convolutional network with a recurrent neural network, which incorporates both spatial and temporal information into the segmentation task. A key challenge in training this network is that the available manual annotations are temporally sparse, which forbids end-to-end training. We address this challenge by performing non-rigid label propagation on the annotations and introducing an exponentially weighted loss function for training. Experiments on aortic MR image sequences demonstrate that the proposed method significantly improves both accuracy and temporal smoothness of segmentation, compared to a baseline method that utilises spatial information only. It achieves an average Dice metric of 0.960 for the ascending aorta and 0.953 for the descending aorta
Surface agnostic metrics for cortical volume segmentation and regression
The cerebral cortex performs higher-order brain functions and is thus implicated in a range of cognitive disorders. Current analysis of cortical variation is typically performed by fitting surface mesh models to inner and outer cortical boundaries and investigating metrics such as surface area and cortical curvature or thickness. These, however, take a long time to run, and are sensitive to motion and image and surface resolution, which can prohibit their use in clinical settings. In this paper, we instead propose a machine learning solution, training a novel architecture to predict cortical thickness and curvature metrics from T2 MRI images, while additionally returning metrics of prediction uncertainty. Our proposed model is tested on a clinical cohort (Down Syndrome) for which surface-based modelling often fails. Results suggest that deep convolutional neural networks are a viable option to predict cortical metrics across a range of brain development stages and pathologies
- …