6 research outputs found

    雪氷新過程導入によるGCM地表気温バイアスの改善

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IA] 急変する北極気候システム及びその全球的な影響の総合的解明―GRENE北極気候変動研究事業研究成果報告2015―11月19日(木) 国立極地研究所 2階 大会議

    Astronomical forcing shaped the timing of early Pleistocene glacial cycles

    No full text
    Abstract Glacial cycles during the early Pleistocene are characterised by a dominant 41,000-year periodicity and amplitudes smaller than those of glacial cycles with ~100,000-year periodicity during the late Pleistocene. However, it remains unclear how the 41,000-year glacial cycles during the early Pleistocene respond to Earth’s astronomical forcings. Here we employ a three-dimensional ice-sheet model to simulate the glacial cycles at ~1.6–1.2 million years before present and analyse the phase angle of precession and obliquity at deglaciations. We show that each deglaciation occurs at every other precession minimum, and when obliquity is large. The lead-lag relationship between precession and obliquity controls the length of interglacial periods, the shape of the glacial cycle, and the glacial ice-sheet geometry. The large amplitudes of obliquity and eccentricity during this period helped to establish robust 41,000-year glacial cycles. This behaviour is explained by the threshold mechanism determined by ice-sheet size and astronomical forcings
    corecore