141 research outputs found

    The infrared properties of active extragalactic nuclei

    Get PDF
    In this paper we review the observed infrared properties of the general classes of active extragalactic nuclei with the purpose of relating the observations to the mechanisms responsible for the emission processes. We will first give a summary of those observations which define the energy distributions and emission line ratios of broad groups of objects. We will intersperse measurements of specific features throughout the discussion that illustrate definite emission mechanisms

    Anti-relapse neurons in the infralimbic cortex of rats drive relapse-suppression by drug omission cues

    Get PDF
    Drug addiction is a chronic relapsing disorder of compulsive drug use. Studies of the neurobehavioral factors that promote drug relapse have yet to produce an effective treatment. Here we take a different approach and examine the factors that suppress – rather than promote – relapse. Adapting Pavlovian procedures to suppress operant drug response, we determined the anti-relapse action of environmental cues that signal drug omission (unavailability) in rats. Under laboratory conditions linked to compulsive drug use and heightened relapse risk, drug omission cues suppressed three major modes of relapse-promotion (drug-predictive cues, stress, and drug exposure) for cocaine and alcohol. This relapse-suppression is partially driven by omission cue-reactive neurons, which constitute small subsets of glutamatergic and GABAergic cells, in the infralimbic cortex. Future studies of such neural activity-based cellular units (neuronal ensembles/memory engram cells) for relapse-suppression can be used to identify alternate targets for addiction medicine through functional characterization of anti-relapse mechanisms

    Untangling knowledge creation and knowledge integration in enterprise wikis

    Get PDF
    A central challenge organizations face is how to build, store, and maintain knowledge over time. Enterprise wikis are community-based knowledge systems situated in an organizational context. These systems have the potential to play an important role in managing knowledge within organizations, but the motivating factors that drive individuals to contribute their knowledge to these systems is not very well understood. We theorize that enterprise wiki initiatives require two separate and distinct types of knowledge-sharing behaviors to succeed: knowledge creation (KC) and knowledge integration (KI). We examine a Wiki initiative at a major German bank to untangle the motivating factors behind KC and KI. Our results suggest KC and KI are indeed two distinct behaviors, reconcile inconsistent findings from past studies on the role of motivational factors for knowledge sharing to establish shared electronic knowledge resources in organizations, and identify factors that can be leveraged to tilt behaviors in favor of KC or KI

    Polarization Properties of the Weakly Magnetized Neutron Star X-Ray Binary GS 1826-238 in the High Soft State

    Get PDF
    The launch of the Imaging X-ray Polarimetry Explorer (IXPE) on 2021 December 9 has opened a new window in X-ray astronomy. We report here the results of the first IXPE observation of a weakly magnetized neutron star, GS 1826−238, performed on 2022 March 29-31 when the source was in a high soft state. An upper limit (99.73% confidence level) of 1.3% for the linear polarization degree is obtained over the IXPE 2-8 keV energy range. Coordinated INTEGRAL and NICER observations were carried out simultaneously with IXPE. The spectral parameters obtained from the fits to the broadband spectrum were used as inputs for Monte Carlo simulations considering different possible geometries of the X-ray emitting region. Comparing the IXPE upper limit with these simulations, we can put constraints on the geometry and inclination angle of GS 1826-238

    Uncovering the geometry of the hot X-ray corona in the Seyfert galaxy NGC 4151 with IXPE

    Get PDF
    We present an X-ray spectropolarimetric analysis of the bright Seyfert galaxy NGC 4151. The source has been observed with the Imaging X-ray Polarimetry Explorer (IXPE) for 700 ks, complemented with simultaneous XMM–Newton (50 ks) and NuSTAR (100 ks) pointings. A polarization degree Π = 4.9 ± 1.1 per cent and angle Ψ = 86° ± 7° east of north (68 per cent confidence level) are measured in the 2–8 keV energy range. The spectropolarimetric analysis shows that the polarization could be entirely due to reflection. Given the low reflection flux in the IXPE band, this requires, however, a reflection with a very large (>38 per cent) polarization degree. Assuming more reasonable values, a polarization degree of the hot corona ranging from ∼4 to ∼8 per cent is found. The observed polarization degree excludes a ‘spherical’ lamppost geometry for the corona, suggesting instead a slab-like geometry, possibly a wedge, as determined via Monte Carlo simulations. This is further confirmed by the X-ray polarization angle, which coincides with the direction of the extended radio emission in this source, supposed to match the disc axis. NGC 4151 is the first active galactic nucleus with an X-ray polarization measure for the corona, illustrating the capabilities of X-ray polarimetry and IXPE in unveiling its geometry

    The X-ray polarization of the Seyfert 1 galaxy IC 4329A

    Get PDF
    We present an X-ray spectro-polarimetric analysis of the bright Seyfert galaxy IC 4329A. The Imaging X-ray Polarimetry Explorer (IXPE) observed the source for ∼500 ks, supported by XMM–Newton (∼60 ks) and NuSTAR (∼80 ks) exposures. We detect polarization in the 2–8 keV band with 2.97σ confidence. We report a polarization degree of 3.3 ± 1.1 per cent and a polarization angle of 78° ± 10° (errors are 1σ confidence). The X-ray polarization is consistent with being aligned with the radio jet, albeit partially due to large uncertainties on the radio position angle. We jointly fit the spectra from the three observatories to constrain the presence of a relativistic reflection component. From this, we obtain constraints on the inclination angle to the inner disc (<39° at 99 per cent confidence) and the disc inner radius (<11 gravitational radii at 99 per cent confidence), although we note that modelling systematics in practice add to the quoted statistical error. Our spectropolarimetric modelling indicates that the 2–8 keV polarization is consistent with being dominated by emission directly observed from the X-ray corona, but the polarization of the reflection component is completely unconstrained. Our constraints on viewer inclination and polarization degree tentatively favour more asymmetric, possibly out-flowing, coronal geometries that produce more highly polarized emission, but the coronal geometry is unconstrained at the 3σ level

    The geometry of the hot corona in MCG-05-23-16 constrained by X-ray polarimetry

    Get PDF
    We report on the second observation of the radio-quiet active galactic nucleus MCG-05-23-16 performed with the Imaging X-ray Polarimetry Explorer (IXPE). The observation started on 2022 November 6 for a net observing time of 640 ks, and was partly simultaneous with NuSTAR (86 ks). After combining these data with those obtained in the first IXPE pointing on 2022 May (simultaneous with XMM–Newton and NuSTAR) we find a 2–8 keV polarization degree Π = 1.6 ± 0.7 (at 68 per cent confidence level), which corresponds to an upper limit Π = 3.2 per cent (at 99 per cent confidence level). We then compare the polarization results with Monte Carlo simulations obtained with the monk code, with which different coronal geometries have been explored (spherical lamppost, conical, slab, and wedge). Furthermore, the allowed range of inclination angles is found for each geometry. If the best-fitting inclination value from a spectroscopic analysis is considered, a cone-shaped corona along the disc axis is disfavoured

    X-ray polarimetry of X-ray pulsar X Persei: another orthogonal rotator?

    Get PDF
    X Persei is a persistent low-luminosity X-ray pulsar of period of ≈ 835 s in a Be binary system. The field strength at the neutron star surface is not known precisely, but indirect signs indicate a magnetic field above 1013 G, which makes the object one of the most magnetized known X-ray pulsars. Here we present the results of observations X Persei performed with the Imaging X-ray Polarimetry Explorer (IXPE). The X-ray polarization signal was found to be strongly dependent on the spin phase of the pulsar. The energy-averaged polarization degree in 3–8 keV band varied from several to ∼20 per cent over the pulse with a phase dependence resembling the pulse profile. The polarization angle shows significant variation and makes two complete revolutions during the pulse period, resulting in nearly nil pulse-phase averaged polarization. Applying the rotating vector model to the IXPE data we obtain the estimates for the rotation axis inclination and its position angle on the sky, as well as for the magnetic obliquity. The derived inclination is close to the orbital inclination, reported earlier for X Persei. The polarimetric data imply a large angle between the rotation and magnetic dipole axes, which is similar to the result reported recently for the X-ray pulsar GRO J1008−57. After eliminating the effect of polarization angle rotation over the pulsar phase using the best-fitting rotating vector model, the strong dependence of the polarization degree with energy was discovered, with its value increasing from 0 at ∼2 keV to 30per cent at 8 keV

    X-ray polarimetry and spectroscopy of the neutron star low-mass X-ray binary GX 9+9: An in-depth study with IXPE and NuSTAR

    Get PDF
    We report on a comprehensive analysis of simultaneous X-ray polarimetric and spectral data of the bright atoll source GX 9+9 with the Imaging X-ray Polarimetry Explorer (IXPE) and NuSTAR. The source is significantly polarized in the 4–8 keV band, with a degree of 2.2%  ±  0.5% (uncertainty at the 68% confidence level). The NuSTAR broad-band spectrum clearly shows an iron line, and is well described by a model including thermal disc emission, a Comptonized component, and reflection. From a spectro-polarimetric fit, we obtain an upper limit to the polarization degree of the disc of 4% (at the 99% confidence level), while the contribution of Comptonized and reflected radiation cannot be conclusively separated. However, the polarization is consistent with resulting from a combination of Comptonization in a boundary or spreading layer, plus reflection off the disc, which significantly contributes in any realistic scenario

    Polarized x-rays constrain the disk-jet geometry in the black hole x-ray binary Cygnus X-1

    Get PDF
    A black hole x-ray binary (XRB) system forms when gas is stripped from a normal star and accretes onto a black hole, which heats the gas sufficiently to emit x-rays. We report a polarimetric observation of the XRB Cygnus X-1 using the Imaging X-ray Polarimetry Explorer. The electric field position angle aligns with the outflowing jet, indicating that the jet is launched from the inner x-ray–emitting region. The polarization degree is 4.01 ± 0.20% at 2 to 8 kiloelectronvolts, implying that the accretion disk is viewed closer to edge-on than the binary orbit. These observations reveal that hot x-ray–emitting plasma is spatially extended in a plane perpendicular to, not parallel to, the jet axis
    corecore