17 research outputs found
Striatum-projecting prefrontal cortex neurons support working memory maintenance
Neurons in the medial prefrontal cortex (mPFC) are functionally linked to working memory (WM) but how distinct projection pathways contribute to WM remains unclear. Based on optical recordings, optogenetic perturbations, and pharmacological interventions in male mice, we report here that dorsomedial striatum (dmStr)-projecting mPFC neurons are essential for WM maintenance, but not encoding or retrieval, in a T-maze spatial memory task. Fiber photometry of GCaMP6m-labeled mPFC→dmStr neurons revealed strongest activity during the maintenance period, and optogenetic inhibition of these neurons impaired performance only when applied during this period. Conversely, enhancing mPFC→dmStr pathway activity—via pharmacological suppression of HCN1 or by optogenetic activation during the maintenance period—alleviated WM impairment induced by NMDA receptor blockade. Moreover, cellular-resolution miniscope imaging revealed that >50% of mPFC→dmStr neurons are active during WM maintenance and that this subpopulation is distinct from neurons active during encoding and retrieval. In all task periods, neuronal sequences were evident. Striatum-projecting mPFC neurons thus critically contribute to spatial WM maintenance
Recommended from our members
Differential predictors for alcohol use in adolescents as a function of familial risk
Abstract: Traditional models of future alcohol use in adolescents have used variable-centered approaches, predicting alcohol use from a set of variables across entire samples or populations. Following the proposition that predictive factors may vary in adolescents as a function of family history, we used a two-pronged approach by first defining clusters of familial risk, followed by prediction analyses within each cluster. Thus, for the first time in adolescents, we tested whether adolescents with a family history of drug abuse exhibit a set of predictors different from adolescents without a family history. We apply this approach to a genetic risk score and individual differences in personality, cognition, behavior (risk-taking and discounting) substance use behavior at age 14, life events, and functional brain imaging, to predict scores on the alcohol use disorders identification test (AUDIT) at age 14 and 16 in a sample of adolescents (N = 1659 at baseline, N = 1327 at follow-up) from the IMAGEN cohort, a longitudinal community-based cohort of adolescents. In the absence of familial risk (n = 616), individual differences in baseline drinking, personality measures (extraversion, negative thinking), discounting behaviors, life events, and ventral striatal activation during reward anticipation were significantly associated with future AUDIT scores, while the overall model explained 22% of the variance in future AUDIT. In the presence of familial risk (n = 711), drinking behavior at age 14, personality measures (extraversion, impulsivity), behavioral risk-taking, and life events were significantly associated with future AUDIT scores, explaining 20.1% of the overall variance. Results suggest that individual differences in personality, cognition, life events, brain function, and drinking behavior contribute differentially to the prediction of future alcohol misuse. This approach may inform more individualized preventive interventions
Differential predictors for alcohol use in adolescents as a function of familial risk
Abstract: Traditional models of future alcohol use in adolescents have used variable-centered approaches, predicting alcohol use from a set of variables across entire samples or populations. Following the proposition that predictive factors may vary in adolescents as a function of family history, we used a two-pronged approach by first defining clusters of familial risk, followed by prediction analyses within each cluster. Thus, for the first time in adolescents, we tested whether adolescents with a family history of drug abuse exhibit a set of predictors different from adolescents without a family history. We apply this approach to a genetic risk score and individual differences in personality, cognition, behavior (risk-taking and discounting) substance use behavior at age 14, life events, and functional brain imaging, to predict scores on the alcohol use disorders identification test (AUDIT) at age 14 and 16 in a sample of adolescents (N = 1659 at baseline, N = 1327 at follow-up) from the IMAGEN cohort, a longitudinal community-based cohort of adolescents. In the absence of familial risk (n = 616), individual differences in baseline drinking, personality measures (extraversion, negative thinking), discounting behaviors, life events, and ventral striatal activation during reward anticipation were significantly associated with future AUDIT scores, while the overall model explained 22% of the variance in future AUDIT. In the presence of familial risk (n = 711), drinking behavior at age 14, personality measures (extraversion, impulsivity), behavioral risk-taking, and life events were significantly associated with future AUDIT scores, explaining 20.1% of the overall variance. Results suggest that individual differences in personality, cognition, life events, brain function, and drinking behavior contribute differentially to the prediction of future alcohol misuse. This approach may inform more individualized preventive interventions
Striatum-projecting prefrontal cortex neurons support working memory maintenance
Abstract Neurons in the medial prefrontal cortex (mPFC) are functionally linked to working memory (WM) but how distinct projection pathways contribute to WM remains unclear. Based on optical recordings, optogenetic perturbations, and pharmacological interventions in male mice, we report here that dorsomedial striatum (dmStr)-projecting mPFC neurons are essential for WM maintenance, but not encoding or retrieval, in a T-maze spatial memory task. Fiber photometry of GCaMP6m-labeled mPFC→dmStr neurons revealed strongest activity during the maintenance period, and optogenetic inhibition of these neurons impaired performance only when applied during this period. Conversely, enhancing mPFC→dmStr pathway activity—via pharmacological suppression of HCN1 or by optogenetic activation during the maintenance period—alleviated WM impairment induced by NMDA receptor blockade. Moreover, cellular-resolution miniscope imaging revealed that >50% of mPFC→dmStr neurons are active during WM maintenance and that this subpopulation is distinct from neurons active during encoding and retrieval. In all task periods, neuronal sequences were evident. Striatum-projecting mPFC neurons thus critically contribute to spatial WM maintenance
Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements
Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal–optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67–0.78), and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the temporal behaviour and chemical composition of the ATOFMS classes also enabled estimation of the relative contribution of transported emissions of each chemical species and total particle mass in the size range investigated. Only 22% of the total ATOFMS-derived particle mass was apportioned to fresh, local emissions, with 78% apportioned to regional/continental-scale emissions.ISSN:1680-7375ISSN:1680-736