1,542 research outputs found
Aberrant α-Adrenergic Hypertrophic Response in Cardiomyocytes from Human Induced Pluripotent Cells
Cardiomyocytes from human embryonic stem cells (hESC-CMs) and induced pluripotent stem cells (hiPSC-CMs) represent new models for drug discovery. Although hypertrophy is a high-priority target, we found that hiPSC-CMs were systematically unresponsive to hypertrophic signals such as the α-adrenoceptor (αAR) agonist phenylephrine (PE) compared to hESC-CMs. We investigated signaling at multiple levels to understand the underlying mechanism of this differential responsiveness. The expression of the normal α1AR gene, ADRA1A, was reversibly silenced during differentiation, accompanied by ADRA1B upregulation in either cell type. ADRA1B signaling was intact in hESC-CMs, but not in hiPSC-CMs. We observed an increased tonic activity of inhibitory kinase pathways in hiPSC-CMs, and inhibition of antihypertrophic kinases revealed hypertrophic increases. There is tonic suppression of cell growth in hiPSC-CMs, but not hESC-CMs, limiting their use in investigation of hypertrophic signaling. These data raise questions regarding the hiPSC-CM as a valid model for certain aspects of cardiac disease. In this article, Fo¨ldes and colleagues show that hiPSC-derived cardiomyocytes are relatively unresponsive to α-adrenergic hypertrophic signals compared to hESC cardiomyocytes. The main difference in hiPSC-CMs that accounts for the defective response is the suppression of growth by tonic antihypertrophic pathways. Superficial similarities in phenotype between cardiomyocytes derived from hESCs or hiPSCs may mask complex differences in signaling
Travel Illness Outbreak Investigation and Treatment among Interprofessional Health Team Members in Guatemala
Purpose: Americans travel each year and acquire illnesses. Gastrointestinal illness is a common self-reported illness and has many associated risk factors. Students from a medical school in Virginia traveled to Guatemala to provide medical care. Overall, 1,250 patients were seen by the student doctors. An outbreak investigation was initiated when members of the medical team began experiencing illness. Methods: Food and water safety was inspected and inquiries were made about the health of other travelers staying at the same host. Furthermore, a voluntary brief survey was completed after returning to the United States. The index patient had seen a patient in the clinic with similar symptoms. An incubation period of 24-36 hours was established. Results: After an adequate kitchen inspection including both food and water distribution, it was determined the illness was being spread from person to person. The survey was administered to 93 travelers and 69 completed the survey. Symptoms were reported by 74% of survey respondents. There was no correlation to consumption of food and water. Conclusions: Prevention measures such as hand hygiene practices should be emphasized to prevent spread of the illness among medical travelers. Limitations include recall bias
Cognitive appraisal of environmental stimuli induces emotion-like states in fish
The occurrence of emotions in non-human animals has been the focus of debate over the years. Recently, an interest in expanding this debate to non-tetrapod vertebrates and to invertebrates has emerged. Within vertebrates, the study of emotion in teleosts is particularly interesting since they represent a divergent evolutionary radiation from that of tetrapods, and thus they provide an insight into the evolution of the biological mechanisms of emotion. We report that Sea Bream exposed to stimuli that vary according to valence (positive, negative) and salience (predictable, unpredictable) exhibit different behavioural, physiological and neuromolecular states. Since according to the dimensional theory of emotion valence and salience define a two-dimensional affective space, our data can be interpreted as evidence for the occurrence of distinctive affective states in fish corresponding to each the four quadrants of the core affective space. Moreover, the fact that the same stimuli presented in a predictable vs. unpredictable way elicited different behavioural, physiological and neuromolecular states, suggests that stimulus appraisal by the individual, rather than an intrinsic characteristic of the stimulus, has triggered the observed responses. Therefore, our data supports the occurrence of emotion-like states in fish that are regulated by the individual's perception of environmental stimuli.European Commission [265957 Copewell]; Fundacao para a Ciencia e Tecnologia [SFRH/BD/80029/2011, SFRH/BPD/72952/2010]info:eu-repo/semantics/publishedVersio
Microwave amplification with nanomechanical resonators
Sensitive measurement of electrical signals is at the heart of modern science
and technology. According to quantum mechanics, any detector or amplifier is
required to add a certain amount of noise to the signal, equaling at best the
energy of quantum fluctuations. The quantum limit of added noise has nearly
been reached with superconducting devices which take advantage of
nonlinearities in Josephson junctions. Here, we introduce a new paradigm of
amplification of microwave signals with the help of a mechanical oscillator. By
relying on the radiation pressure force on a nanomechanical resonator, we
provide an experimental demonstration and an analytical description of how the
injection of microwaves induces coherent stimulated emission and signal
amplification. This scheme, based on two linear oscillators, has the advantage
of being conceptually and practically simpler than the Josephson junction
devices, and, at the same time, has a high potential to reach quantum limited
operation. With a measured signal amplification of 25 decibels and the addition
of 20 quanta of noise, we anticipate near quantum-limited mechanical microwave
amplification is feasible in various applications involving integrated
electrical circuits.Comment: Main text + supplementary information. 14 pages, 3 figures (main
text), 18 pages, 6 figures (supplementary information
State Transfer Between a Mechanical Oscillator and Microwave Fields in the Quantum Regime
Recently, macroscopic mechanical oscillators have been coaxed into a regime
of quantum behavior, by direct refrigeration [1] or a combination of
refrigeration and laser-like cooling [2, 3]. This exciting result has
encouraged notions that mechanical oscillators may perform useful functions in
the processing of quantum information with superconducting circuits [1, 4-7],
either by serving as a quantum memory for the ephemeral state of a microwave
field or by providing a quantum interface between otherwise incompatible
systems [8, 9]. As yet, the transfer of an itinerant state or propagating mode
of a microwave field to and from a mechanical oscillator has not been
demonstrated owing to the inability to agilely turn on and off the interaction
between microwave electricity and mechanical motion. Here we demonstrate that
the state of an itinerant microwave field can be coherently transferred into,
stored in, and retrieved from a mechanical oscillator with amplitudes at the
single quanta level. Crucially, the time to capture and to retrieve the
microwave state is shorter than the quantum state lifetime of the mechanical
oscillator. In this quantum regime, the mechanical oscillator can both store
and transduce quantum information
The relationship of neutrophil elastase and proteinase 3 with risk factors, and chronic complications in type 2 diabetes: A Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) sub-study
Introduction: Neutrophil elastase (NE) and proteinase 3 (PR3) are novel inflammation biomarkers. We investigated their associations with chronic complications, determinants of biomarker levels and effects of fenofibrate in patients with type 2 diabetes mellitus (T2DM) from Fenofibrate Intervention and Event Lowering in Diabetes study. Methods: Plasma NE and PR3 levels were quantified at baseline (n = 2000), and relationships with complications over 5-years assessed. Effects of fenofibrate on biomarker levels (n = 200) were determined at four follow-up visits. Results: Higher waist-to-hip ratio, homocysteine and C-reactive protein and lower apoA-II were determinants of higher NE and PR3 levels. Higher NE levels were associated with on-trial stroke and cardiovascular mortality, and higher PR3 levels with on-trial stroke, but associations were not significant after adjustment for confounding factors. Although higher NE and PR3 levels were associated with baseline total microvascular disease, only NE levels were associated with on-trial neuropathy or amputation. These associations were not significant after adjusting for multiple comparisons. NE and PR3 levels did not change with fenofibrate. Conclusions: In T2DM plasma NE and PR3 levels are associated with vascular risk factors, and total microvascular disease at baseline, but on rigorous analyses were not associated with on-trial complications. Levels were not changed by fenofibrate
Generation of Three-Qubit Entangled States using Superconducting Phase Qubits
Entanglement is one of the key resources required for quantum computation, so
experimentally creating and measuring entangled states is of crucial importance
in the various physical implementations of a quantum computer. In
superconducting qubits, two-qubit entangled states have been demonstrated and
used to show violations of Bell's Inequality and to implement simple quantum
algorithms. Unlike the two-qubit case, however, where all maximally-entangled
two-qubit states are equivalent up to local changes of basis, three qubits can
be entangled in two fundamentally different ways, typified by the states
and . Here we demonstrate the operation of three coupled
superconducting phase qubits and use them to create and measure
and states. The states are fully characterized
using quantum state tomography and are shown to satisfy entanglement witnesses,
confirming that they are indeed examples of three-qubit entanglement and are
not separable into mixtures of two-qubit entanglement.Comment: 9 pages, 5 figures. Version 2: added supplementary information and
fixed image distortion in Figure 2
What happened to anti-malarial markets after the Affordable Medicines Facility-malaria pilot? Trends in ACT availability, price and market share from five African countries under continuation of the private sector co-payment mechanism
BACKGROUND: The private sector supplies anti-malarial treatment for large proportions of patients in sub-Saharan Africa. Following the large-scale piloting of the Affordable Medicines Facility-malaria (AMFm) from 2010 to 2011, a private sector co-payment mechanism (CPM) provided continuation of private sector subsidies for quality-assured artemisinin combination therapies (QAACT). This article analyses for the first time the extent to which improvements in private sector QAACT supply and distribution observed during the AMFm were maintained or intensified during continuation of the CPM through 2015 in Kenya, Madagascar, Nigeria, Tanzania and Uganda using repeat cross-sectional outlet survey data. RESULTS: QAACT market share in all five countries increased during the AMFm period (p < 0.001). According to the data from the last ACTwatch survey round, in all study countries except Madagascar, AMFm levels of private sector QAACT availability were maintained or improved. In 2014/15, private sector QAACT availability was greater than 70% in Nigeria (84.3%), Kenya (70.5%), Tanzania (83.0%) and Uganda (77.1%), but only 11.2% in Madagascar. QAACT market share was maintained or improved post-AMFm in Nigeria, Tanzania and Uganda, but statistically significant declines were observed in Kenya and Madagascar. In 2014/5, QAACT market share was highest in Kenya and Uganda (48.2 and 47.5%, respectively) followed by Tanzania (39.2%), Nigeria (35.0%), and Madagascar (7.0%). Four of the five countries experienced significant decreases in median QAACT price during the AMFm period. Private sector QAACT prices were maintained or further reduced in Tanzania, Nigeria and Uganda, but prices increased significantly in Kenya and Madagascar. SP prices were consistently lower than those of QAACT in the AMFm period, with the exception of Kenya and Tanzania in 2011, where they were equal. In 2014/5 QAACT remained two to three times more expensive than the most popular non-artemisinin therapy in all countries except Tanzania. CONCLUSIONS: Results suggest that a private sector co-payment mechanism for QAACT implemented at national scale for 5 years was associated with positive and sustained improvements in QAACT availability, price and market share in Nigeria, Tanzania and Uganda, with more mixed results in Kenya, and few improvements in Madagascar. The subsidy mechanism as implemented over time across countries was not sufficient on its own to achieve optimal QAACT uptake. Supporting interventions to address continued availability and distribution of non-artemisinin therapies, and to create demand for QAACT among providers and consumers need to be effectively implemented to realize the full potential of this subsidy mechanism. Furthermore, there is need for comprehensive market assessments to identify contemporary market barriers to high coverage with both confirmatory testing and appropriate treatment
Tri-meson-mixing of -- and -- in the light-cone quark model
The radiative transition form factors of the pseudoscalar mesons {,
, } and the vector mesons {, , } are restudied
with -- and -- in tri-meson-mixing
pattern, which is described by tri-mixing matrices in the light-cone
constituent quark model. The experimental transition decay widths are better
reproduced with tri-meson-mixing than previous results in a two-mixing-angle
scenario of only two-meson - mixing and - mixing.Comment: 8 pages, 6 figures, final version to appear in EPJ
- …