21 research outputs found
3D-printed gelatin methacrylate scaffolds with controlled architecture and stiffness modulate the fibroblast phenotype towards dermal regeneration
Impaired skin wound healing due to severe injury often leads to dysfunctional scar tissue formation as a result of excessive and persistent myofibroblast activation, characterised by the increased expression of α-smooth muscle actin (αSMA) and extracellular matrix (ECM) proteins. Yet, despite extensive research on impaired wound healing and the advancement in tissue-engineered skin substitutes, scar formation remains a significant clinical challenge. This study aimed to first investigate the effect of methacrylate gelatin (GelMA) biomaterial stiffness on human dermal fibroblast behaviour in order to then design a range of 3D-printed GelMA scaffolds with tuneable structural and mechanical properties and understand whether the introduction of pores and porosity would support fibroblast activity, while inhibiting myofibroblast-related gene and protein expression. Results demonstrated that increasing GelMA stiffness promotes myofibroblast activation through increased fibrosis-related gene and protein expression. However, the introduction of a porous architecture by 3D printing facilitated healthy fibroblast activity, while inhibiting myofibroblast activation. A significant reduction was observed in the gene and protein production of αSMA and the expression of ECM-related proteins, including fibronectin I and collagen III, across the range of porous 3D-printed GelMA scaffolds. These results show that the 3D-printed GelMA scaffolds have the potential to improve dermal skin healing, whilst inhibiting fibrosis and scar formation, therefore potentially offering a new treatment for skin repair.The authors acknowledge funding from Science Foundation Ireland under the M-ERA.NET program, Transnational Call 2016 (17/US/3437; Ireland), EU BlueHuman Interreg Atlantic Area Project (grant EAPA_151/2016) and Science Foundation Ireland, through the Advanced Materials
and BioEngineering Research Centre (AMBER; grants 12/RC/2278 and 12/RC/2278_P2)
Ecological Factors and Childhood Eating Behaviours at 5 Years of Age: findings from the ROLO longitudinal birth cohort study
Individual differences in children eating behaviours have been linked with childhood overweight and obesity. The determinants of childhood eating behaviours are influenced by a complex combination of hereditary and ecological factors. This study examines if key ecological predictors of childhood overweight; maternal socio-economic status (SES), children’s screen time, and childcare arrangements, are associated with eating behaviours in children aged 5-years-old
Interviews with Irish healthcare workers from different disciplines about palliative care for people with Parkinson’s disease: a definite role but uncertainty around terminology and timing
Background: An integrated palliative care approach is recommended in all life-limiting diseases, including Parkinson’s disease (PD). However research shows that people with PD have unmet palliative care needs. The study aimed to explore multidisciplinary healthcare workers’ (HCWs) views on palliative care for people with PD, identifying perceived barriers and facilitators. Methods: A qualitative design was used; data was analysed using Thematic Analysis. Semi-structured interviews were conducted with 30 HCWs, working either with people with PD or in a palliative care setting in Ireland. Results: A number of perceived barriers were evident helping to account for the previously reported unmet palliative care needs in PD. A lack of education about PD and palliative care meant that HCWs were unsure of the appropriateness of referral, and patients and carers weren’t equipped with information to seek palliative care. A lack of communication between PD and palliative care specialists was seen to impede collaboration between the disciplines. Uncertainty about the timing of palliative care meant that it was often not introduced until a crisis point, despite the recognised need for early planning due to increased prevalence of dementia. Conclusions: Most HCWs recognised a need for palliative care for people with PD; however several barriers to implementing a palliative care approach in this population need to be addressed. Implications for clinical practice and policy include the need for an integrated model of care, and education for all HCWs, patients, carers, and the public on both the nature of advanced PD, and the potential of palliative care in support of patients and their family members
Number of days required to measure sedentary time and physical activity using accelerometery in rheumatoid arthritis: a reliability study
This study aimed to determine the minimum number of days required to reliably estimate free-living sedentary time, light-intensity physical activity (LPA) and moderate-intensity physical activity (MPA) using accelerometer data in people with Rheumatoid Arthritis (RA), according to Disease Activity Score-28-C-reactive protein (DAS-28-CRP). Secondary analysis of two existing RA cohorts with controlled (cohort 1) and active (cohort 2) disease was undertaken. People with RA were classified as being in remission (DAS-28-CRP < 2.4, n = 9), or with low (DAS-28-CRP ≥ 2.4—≤ 3.2, n = 15), moderate (DAS-28-CRP > 3.2—≤ 5.1, n = 41) or high (DAS-28-CRP > 5.1, n = 16) disease activity. Participants wore an ActiGraph accelerometer on their right hip for 7 days during waking hours. Validated RA-specific cut-points were applied to accelerometer data to estimate free-living sedentary time, LPA and MPA (%/day). Single-day intraclass correlation coefficients (ICC) were calculated and used in the Spearman Brown prophecy formula to determine the number of monitoring days required to achieve measurement reliability (ICC ≥ 0.80) for each group. The remission group required ≥ 4 monitoring days to achieve an ICC ≥ 0.80 for sedentary time and LPA, with low, moderate and high disease activity groups requiring ≥ 3 monitoring days to reliably estimate these behaviours. The monitoring days required for MPA were more variable across disease activity groups (remission = ≥ 3 days; low = ≥ 2 days; moderate = ≥ 3 days; high = ≥ 5 days). We conclude at least 4 monitoring days will reliably estimate sedentary time and LPA in RA, across the whole spectrum of disease activity. However, to reliably estimate behaviours across the movement continuum (sedentary time, LPA, MPA), at least 5 monitoring days are required
Current practice and surgical outcomes of neoadjuvant chemotherapy for early breast cancer : UK NeST study
Funding Information: This work was funded by a grant from the Association of Breast SurgeryPeer reviewedPublisher PD
Combined point of care nucleic acid and antibody testing for SARS-CoV-2 following emergence of D614G Spike Variant
Rapid COVID-19 diagnosis in hospital is essential, though complicated by 30-50% of nose/throat swabs being negative by SARS-CoV-2 nucleic acid amplification testing (NAAT). Furthermore, the D614G spike mutant now dominates the pandemic and it is unclear how serological tests designed to detect anti-Spike antibodies perform against this variant. We assess the diagnostic accuracy of combined rapid antibody point of care (POC) and nucleic acid assays for suspected COVID-19 disease due to either wild type or the D614G spike mutant SARS-CoV-2. The overall detection rate for COVID-19 is 79.2% (95CI 57.8-92.9%) by rapid NAAT alone. Combined point of care antibody test and rapid NAAT is not impacted by D614G and results in very high sensitivity for COVID-19 diagnosis with very high specificity
Recommended from our members
Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2
Abstract: Although two-dose mRNA vaccination provides excellent protection against SARS-CoV-2, there is little information about vaccine efficacy against variants of concern (VOC) in individuals above eighty years of age1. Here we analysed immune responses following vaccination with the BNT162b2 mRNA vaccine2 in elderly participants and younger healthcare workers. Serum neutralization and levels of binding IgG or IgA after the first vaccine dose were lower in older individuals, with a marked drop in participants over eighty years old. Sera from participants above eighty showed lower neutralization potency against the B.1.1.7 (Alpha), B.1.351 (Beta) and P.1. (Gamma) VOC than against the wild-type virus and were more likely to lack any neutralization against VOC following the first dose. However, following the second dose, neutralization against VOC was detectable regardless of age. The frequency of SARS-CoV-2 spike-specific memory B cells was higher in elderly responders (whose serum showed neutralization activity) than in non-responders after the first dose. Elderly participants showed a clear reduction in somatic hypermutation of class-switched cells. The production of interferon-γ and interleukin-2 by SARS-CoV-2 spike-specific T cells was lower in older participants, and both cytokines were secreted primarily by CD4 T cells. We conclude that the elderly are a high-risk population and that specific measures to boost vaccine responses in this population are warranted, particularly where variants of concern are circulating
Recommended from our members
Single-cell multi-omics analysis of the immune response in COVID-19
Funder: Lister Institute of Preventive Medicine; doi: https://doi.org/10.13039/501100001255Funder: University College London, Birkbeck MRC Doctoral Training ProgrammeFunder: The Jikei University School of MedicineFunder: Action Medical Research (GN2779)Funder: NIHR Clinical Lectureship (CL-2017-01-004)Funder: NIHR (ACF-2018-01-004) and the BMA FoundationFunder: Chan Zuckerberg Initiative (grant 2017-174169) and from Wellcome (WT211276/Z/18/Z and Sanger core grant WT206194)Funder: UKRI Innovation/Rutherford Fund Fellowship allocated by the MRC and the UK Regenerative Medicine Platform (MR/5005579/1 to M.Z.N.). M.Z.N. and K.B.M. have been funded by the Rosetrees Trust (M944)Funder: Barbour FoundationFunder: ERC Consolidator and EU MRG-Grammar awardsFunder: Versus Arthritis Cure Challenge Research Grant (21777), and an NIHR Research Professorship (RP-2017-08-ST2-002)Funder: European Molecular Biology Laboratory (EMBL)Abstract: Analysis of human blood immune cells provides insights into the coordinated response to viral infections such as severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19). We performed single-cell transcriptome, surface proteome and T and B lymphocyte antigen receptor analyses of over 780,000 peripheral blood mononuclear cells from a cross-sectional cohort of 130 patients with varying severities of COVID-19. We identified expansion of nonclassical monocytes expressing complement transcripts (CD16+C1QA/B/C+) that sequester platelets and were predicted to replenish the alveolar macrophage pool in COVID-19. Early, uncommitted CD34+ hematopoietic stem/progenitor cells were primed toward megakaryopoiesis, accompanied by expanded megakaryocyte-committed progenitors and increased platelet activation. Clonally expanded CD8+ T cells and an increased ratio of CD8+ effector T cells to effector memory T cells characterized severe disease, while circulating follicular helper T cells accompanied mild disease. We observed a relative loss of IgA2 in symptomatic disease despite an overall expansion of plasmablasts and plasma cells. Our study highlights the coordinated immune response that contributes to COVID-19 pathogenesis and reveals discrete cellular components that can be targeted for therapy