10 research outputs found

    Evolution of the inflammatory and fibroproliferative responses during resolution and repair after ventilator-induced lung injury in the rat

    Full text link
    Background: The time course and mechanisms of resolution and repair, and the potential for fibrosis following ventilation-induced lung injury (VILI), are unclear. We sought to examine the pattern of inflammation, injury, repair, and fibrosis following VILI. Methods: Sixty anesthetized rats were subject to high-stretch; low-stretch, or sham ventilation, and randomly allocated to undergo periods of recovery of 6, 24, 48, and 96 h, and 7 and 14 days. Animals were then reanesthetized, and the extent of lung injury, inflammation, and repair determined. Results: No injury was seen following low-stretch or sham ventilation. VILI caused severe lung injury, maximal at 24 h, but largely resolved by 96 h. Arterial oxygen tension decreased from a mean (SD) of 144.8 (4.1) mmHg to 96.2 (10.3) mmHg 6 h after VILI, before gradually recovering to 131.2 (14.3) mmHg at 96 h. VILI induced an early neutrophilic alveolitis and a later lymphocytic alveolitis, followed by a monocyte/macrophage infiltration. Alveolar tumor necrosis factor-alpha, interleukin-1 beta, and transforming growth factor-beta 1 concentrations peaked at 6 h and returned to baseline within 24 h, while interleukin-10 remained increased for 48 h. VILI generated a marked but transient fibroproliferative response, which restored normal lung architecture. There was no evidence of fibrosis at 7 and 14 days. Conclusions: High-stretch ventilation caused severe lung injury, activating a transient inflammatory and fibroproliferative repair response, which restored normal lung architecture without evidence of fibrosis

    Evolution of the inflammatory and fibroproliferative responses during resolution and repair after ventilator-induced lung injury in the rat

    Full text link
    Background: The time course and mechanisms of resolution and repair, and the potential for fibrosis following ventilation-induced lung injury (VILI), are unclear. We sought to examine the pattern of inflammation, injury, repair, and fibrosis following VILI. Methods: Sixty anesthetized rats were subject to high-stretch; low-stretch, or sham ventilation, and randomly allocated to undergo periods of recovery of 6, 24, 48, and 96 h, and 7 and 14 days. Animals were then reanesthetized, and the extent of lung injury, inflammation, and repair determined. Results: No injury was seen following low-stretch or sham ventilation. VILI caused severe lung injury, maximal at 24 h, but largely resolved by 96 h. Arterial oxygen tension decreased from a mean (SD) of 144.8 (4.1) mmHg to 96.2 (10.3) mmHg 6 h after VILI, before gradually recovering to 131.2 (14.3) mmHg at 96 h. VILI induced an early neutrophilic alveolitis and a later lymphocytic alveolitis, followed by a monocyte/macrophage infiltration. Alveolar tumor necrosis factor-alpha, interleukin-1 beta, and transforming growth factor-beta 1 concentrations peaked at 6 h and returned to baseline within 24 h, while interleukin-10 remained increased for 48 h. VILI generated a marked but transient fibroproliferative response, which restored normal lung architecture. There was no evidence of fibrosis at 7 and 14 days. Conclusions: High-stretch ventilation caused severe lung injury, activating a transient inflammatory and fibroproliferative repair response, which restored normal lung architecture without evidence of fibrosis

    The Association between Conventional Antidepressants and the Metabolic Syndrome

    Full text link
    corecore