17 research outputs found

    Limited heat tolerance in a cold-adapted seabird: Implications of a warming Arctic

    Get PDF
    The Arctic is warming at approximately twice the global rate, with welldocumented indirect effects on wildlife. However, few studies have examined the direct effects of warming temperatures on Arctic wildlife, leaving the importance of heat stress unclear. Here, we assessed the direct effects of increasing air temperatures on the physiology of thick-billed murres (Uria lomvia), an Arctic seabird with reported mortalities due to heat stress while nesting on sun-exposed cliffs.We used flow-through respirometry to measure the response of body temperature, resting metabolic rate, evaporative water loss and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production) in murres while experimentally increasing air temperature. Murres had limited heat tolerance, exhibiting: (1) a low maximum body temperature (43.3°C); (2) a moderate increase in resting metabolic rate relative that within their thermoneutral zone (1.57 times); (3) a small increase in evaporative water loss rate relative that within their thermoneutral zone (1.26 times); and (4) a low maximum evaporative cooling efficiency (0.33). Moreover, evaporative cooling efficiency decreased with increasing air temperature, suggesting murres were producing heat at a faster rate than they were dissipating it. Larger murres also had a higher rate of increase in resting metabolic rate and a lower rate of increase in evaporative water loss than smaller murres; therefore, evaporative cooling efficiency declined with increasing body mass. As a coldadapted bird, murres\u27 limited heat tolerance likely explains their mortality on warm days. Direct effects of overheating on Arctic wildlife may be an important but under-reported impact of climate change

    Using Patient-Specific 3D Modeling and Simulations to Optimize Microwave Ablation Therapy for Liver Cancer

    Get PDF
    Microwave ablation (MWA) of liver tumors presents challenges like under- and over-ablation, potentially leading to inadequate tumor destruction and damage to healthy tissue. This study aims to develop personalized three-dimensional (3D) models to simulate MWA for liver tumors, incorporating patient-specific characteristics. The primary objective is to validate the predicted ablation zones compared to clinical outcomes, offering insights into MWA before therapy to facilitate accurate treatment planning. Contrast-enhanced CT images from three patients were used to create 3D models. The simulations used coupled electromagnetic wave propagation and bioheat transfer to estimate the temperature distribution, predicting tumor destruction and ablation margins. The findings indicate that prolonged ablation does not significantly improve tumor destruction once an adequate margin is achieved, although it increases tissue damage. There was a substantial overlap between the clinical ablation zones and the predicted ablation zones. For patient 1, the Dice score was 0.73, indicating high accuracy, with a sensitivity of 0.72 and a specificity of 0.76. For patient 2, the Dice score was 0.86, with a sensitivity of 0.79 and a specificity of 0.96. For patient 3, the Dice score was 0.8, with a sensitivity of 0.85 and a specificity of 0.74. Patient-specific 3D models demonstrate potential in accurately predicting ablation zones and optimizing MWA treatment strategies

    Limited heat tolerance in an Arctic passerine: Thermoregulatory implications for cold-specialized birds in a rapidly warming world

    Get PDF
    Arctic animals inhabit some of the coldest environments on the planet and have evolved physiological mechanisms for minimizing heat loss under extreme cold. However, the Arctic is warming faster than the global average and how well Arctic animals tolerate even moderately high air temperatures (Ta) is unknown. Using flow-through respirometry, we investigated the heat tolerance and evaporative cooling capacity of snow buntings (Plectrophenax nivalis; ≈31 g, N = 42), a cold specialist, Arctic songbird. We exposed buntings to increasing Ta and measured body temperature (Tb), resting metabolic rate (RMR), rates of evaporative water loss (EWL), and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production). Buntings had an average (±SD) Tb of 41.3 ± 0.2°C at thermoneutral Ta and increased Tb to a maximum of 43.5 ± 0.3°C. Buntings started panting at Ta of 33.2 ± 1.7°C, with rapid increases in EWL starting at Ta = 34.6°C, meaning they experienced heat stress when air temperatures were well below their body temperature. Maximum rates of EWL were only 2.9× baseline rates at thermoneutral Ta, a markedly lower increase than seen in more heat-tolerant arid-zone species (e.g., ≄4.7× baseline rates). Heat-stressed buntings also had low evaporative cooling efficiencies, with 95% of individuals unable to evaporatively dissipate an amount of heat equivalent to their own metabolic heat production. Our results suggest that buntings’ well-developed cold tolerance may come at the cost of reduced heat tolerance. As the Arctic warms, and this and other species experience increased periods of heat stress, a limited capacity for evaporative cooling may force birds to increasingly rely on behavioral thermoregulation, such as minimizing activity, at the expense of diminished performance or reproductive investment

    Reducing return of disease activity in patients with relapsing multiple sclerosis transitioned from natalizumab to teriflunomide: 12-month interim results of teriflunomide therapy.

    Get PDF
    Background: Natalizumab is an effective treatment for relapsing multiple sclerosis. Return of disease activity upon natalizumab discontinuance creates the need for follow-up therapeutic strategies. Objective: To assess the efficacy of teriflunomide following natalizumab discontinuance in relapsing multiple sclerosis patients. Methods: Clinically stable relapsing multiple sclerosis patients completing 12 or more consecutive months of natalizumab, testing positive for anti-John Cunningham virus antibody, started teriflunomide 14 mg/day, 28 ± 7 days after their final natalizumab infusion. Physical examination, Expanded Disability Status Scale, laboratory assessments, and brain magnetic resonance imaging were performed at screening and multiple follow-up visits. Results: Fifty-five patients were enrolled in the study. The proportion of patients relapse-free was 0.94, restricted mean time to first gadolinium-enhancing lesion was 10.9 months and time to 3-month sustained disability worsening was 11.8 months. The mean number of new or enlarging T2 lesions per patient at 12 months was 0.42. Exploratory analyses revealed an annualized relapse rate of 0.08, and a proportion of patients with no evidence of disease activity of 0.68. Forty-seven patients (85.5%) reported adverse events, 95% of which were mild to moderate. Conclusions: Teriflunomide therapy initiated without natalizumab washout resulted in a low rate of return of disease activity. Clinicians may consider this a worthwhile strategy when transitioning clinically stable patients off natalizumab to another therapy.ClinicalTrials.gov Identifier: NCT01970410

    An Empiricist’s Guide to Using Ecological Theory

    Get PDF
    A scientific understanding of the biological world arises when ideas about how nature works are formalized, tested, refined, and then tested again. Although the benefits of feedback between theoretical and empirical research are widely acknowledged by ecologists, this link is still not as strong as it could be in ecological research. This is in part because theory, particularly when expressed mathematically, can feel inaccessible to empiricists who may have little formal training in advanced math. To address this persistent barrier, we provide a general and accessible guide that covers the basic, step-by-step process of how to approach, understand, and use ecological theory in empirical work. We first give an overview of how and why mathematical theory is created, then outline four specific ways to use both mathematical and verbal theory to motivate empirical work, and finally present a practical tool kit for reading and understanding the mathematical aspects of ecological theory.We hope that empowering empiricists to embrace theory in their work will help move the field closer to a full integration of theoretical and empirical research

    Fully Automated Deep Learning Based Auto-Contouring of Liver Segments and Spleen on Contrast-Enhanced CT Images

    Get PDF
    Manual delineation of liver segments on computed tomography (CT) images for primary/secondary liver cancer (LC) patients is time-intensive and prone to inter/intra-observer variability. Therefore, we developed a deep-learning-based model to auto-contour liver segments and spleen on contrast-enhanced CT (CECT) images. We trained two models using 3d patch-based attention U-Net ([Formula: see text] and 3d full resolution of nnU-Net ([Formula: see text] to determine the best architecture ([Formula: see text]. BA was used with vessels ([Formula: see text] and spleen ([Formula: see text] to assess the impact on segment contouring. Models were trained, validated, and tested on 160 ([Formula: see text]), 40 ([Formula: see text]), 33 ([Formula: see text]), 25 (CCH) and 20 (CPVE) CECT of LC patients. [Formula: see text] outperformed [Formula: see text] across all segments with median differences in Dice similarity coefficients (DSC) ranging 0.03-0.05 (p \u3c 0.05). [Formula: see text], and [Formula: see text] were not statistically different (p \u3e 0.05), however, both were slightly better than [Formula: see text] by DSC up to 0.02. The final model, [Formula: see text], showed a mean DSC of 0.89, 0.82, 0.88, 0.87, 0.96, and 0.95 for segments 1, 2, 3, 4, 5-8, and spleen, respectively on entire test sets. Qualitatively, more than 85% of cases showed a Likert score [Formula: see text] 3 on test sets. Our final model provides clinically acceptable contours of liver segments and spleen which are usable in treatment planning

    Biomimetic adhesive containing nanocomposite hydrogel with enhanced materials properties

    Full text link
    Chemically crosslinked polyacrylamide (PAAm) nanocomposite hydrogels were prepared with inorganic nano-silicate, Laponite, and dopamine methacrylamide (DMA). DMA consists of a biomimetic adhesive side chain covalently linked to a polymerizable methacrylate monomer. Copolymerizing DMA into a PAAm hydrogel strongly enhanced the interfacial interaction between the polymer network and Laponite. Nanocomposite hydrogels demonstrated reduced water content and increased materials properties that were dependent on both the Laponite and DMA contents. While increasing Laponite content alone improved materials properties moderately, these improvements were drastically enhanced when DMA is incorporated as measured by both unconfined compression testing and oscillatory rheometry. DMA-containing nanocomposite hydrogels demonstrated increased stiffness as well as excellent energy dissipation capability. Nanocomposite hydrogels with relatively low DMA and Laponite contents (2 to 3 wt% for each) demonstrated maximum compressive stress, elastic modulus, toughness, and storage and loss moduli values that were over an order of magnitude higher than control gels. DMA-containing nanocomposite hydrogels also demonstrated improved fracture resistance to compressive loading, capable of repeated compressed to 80% strain without rest for over 10 times while exhibiting compressive stress of over 1.1 MPa. The catechol side chain of DMA likely formed strong physical bonds with Laponite, which can dissipate fracture energy while minimizing permanent damage to the network architecture

    Limited heat tolerance in a cold-adapted seabird: Implications of a warming Arctic

    Full text link
    The Arctic is warming at approximately twice the global rate, with welldocumented indirect effects on wildlife. However, few studies have examined the direct effects of warming temperatures on Arctic wildlife, leaving the importance of heat stress unclear. Here, we assessed the direct effects of increasing air temperatures on the physiology of thick-billed murres (Uria lomvia), an Arctic seabird with reported mortalities due to heat stress while nesting on sun-exposed cliffs.We used flow-through respirometry to measure the response of body temperature, resting metabolic rate, evaporative water loss and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production) in murres while experimentally increasing air temperature. Murres had limited heat tolerance, exhibiting: (1) a low maximum body temperature (43.3°C); (2) a moderate increase in resting metabolic rate relative that within their thermoneutral zone (1.57 times); (3) a small increase in evaporative water loss rate relative that within their thermoneutral zone (1.26 times); and (4) a low maximum evaporative cooling efficiency (0.33). Moreover, evaporative cooling efficiency decreased with increasing air temperature, suggesting murres were producing heat at a faster rate than they were dissipating it. Larger murres also had a higher rate of increase in resting metabolic rate and a lower rate of increase in evaporative water loss than smaller murres; therefore, evaporative cooling efficiency declined with increasing body mass. As a coldadapted bird, murres\u27 limited heat tolerance likely explains their mortality on warm days. Direct effects of overheating on Arctic wildlife may be an important but under-reported impact of climate change
    corecore