21 research outputs found
Search and Seizure: The Erosion of the Fourth Amendment under the Terry-Standard, Creating Suspicion in High Crimes Areas
State v. Andrews, 57 Ohio St. 3d 86, 565 N.E.2d 1271 (1991), cert. denied, 111 S. Ct. 2833 (interim ed. 1991)
Effects of Preexisting Psychotropic Medication Use on a Cohort of Patients with Ischemic Stroke Outcome
Background: Several studies investigated the use of selective serotonin reuptake inhibitors (SSRI) after ischemic stroke to improve motor recovery. However, little is known about the effects of preexisting psychotropic medication use (PPMU), such as antidepressants, on a long-term ischemic stroke functional disability.
Objective: We sought to determine the prevalence of PPMU and whether PPMU relates to the long-term clinical outcome in a cohort of patients presenting with acute ischemic strokes.
Methods: We retrospectively analyzed 323 consecutive patients who presented with an acute ischemic stroke in a single institution between January 2015 and December 2017. Baseline characteristics, functional disability as measured by the modified Rankin Scale (mRS), and major adverse cardiovascular complications (MACE) within 365 days were recorded. The comparison groups included a control group of ischemic stroke patients who were not on psychotropic medications before and after the index ischemic stroke and a second group of poststroke psychotropic medication use (PoMU), which consisted of patients started on psychotropic medication during the index admission.
Results: The prevalence of PPMU in the studied cohort was 21.4% (69/323). There was a greater proportion of females in the PPMU than in the comparison groups (P \u3c 0.001), while vascular risk factors were similar in all groups, except for an increased presence of posterior circulation infarcts in the PPMU (37.4% vs. 18.8%, P \u3c 0.001). Among the patients with available 1-year follow-up data (n = 246), we noted significantly greater improvement in stroke deficits, measured by National Institute of Health Stroke Scale (NIHSS) between PPMU and PoMU vs. control (3 (0-7) versus 1 (0-4), P = 0.041). The 1-year mRS was worse in PPMU and PoMU compared to the control group (2 (IQ 1-3) vs. 2 (IQ 0-3) vs. 1 (IQ 0-2), respectively, P = 0.013), but delta mRS reflecting the degree of mRS improvement showed no significant difference between any PMU and control patients (P = 0.76). There was no statistically significant difference in MACE.
Conclusion: PPMU in ischemic stroke is common; it can be beneficial in ischemic stroke in the long-term clinical outcome and is not associated with increased risks of MACE
Gene expression by marrow stromal cells in a porous collagen-glycosaminoglycan scaffold is affected by pore size and mechanical stimulation.
Marrow stromal cell (MSC) populations, which are a potential source of undifferentiated mesenchymal cells, and culture scaffolds that mimic natural extracellular matrix are attractive options for orthopaedic tissue engineering. A type I collagen-glycosaminoglycan (CG) scaffold that has previously been used clinically for skin regeneration was recently shown to support expression of bone-associated proteins and mineralisation by MSCs cultured in the presence of osteogenic supplements. Here we follow RNA markers of osteogenic differentiation in this scaffold. We demonstrate that transcripts of the late stage markers bone sialoprotein and osteocalcin are present at higher levels in scaffold constructs than in two-dimensional culture, and that considerable gene induction can occur in this scaffold even in the absence of soluble osteogenic supplements. We also find that bone-related gene expression is affected by pore size, mechanical constraint, and uniaxial cyclic strain of the CG scaffold. The data presented here further establish the CG scaffold as a potentially valuable substrate for orthopaedic tissue engineering and for research on the mechanical interactions between cells and their environment, and suggest that a more freely-contracting scaffold with larger pore size may provide an environment more conducive to osteogenesis than constrained scaffolds with smaller pore sizes
Medical Encounter Characteristics of HIV Seroconverters in the US Army and Air Force, 2000–2004
BACKGROUND AND METHODS: Active duty US Army and Air Force military personnel undergo mandatory biennial HIV antibody screening. We compared pre- and post-HIV seroconversion health status by conducting a case-control study, which evaluated all medical encounters and sociodemographic factors among incident HIV seroconverters and HIV-negative controls from June 2000 through February 2004.
RESULTS: A total of 274 HIV seroconverters and 6205 HIV-negative personnel were included. In multivariate analysis restricted to male personnel (cases = 261, controls = 5801), single marital status (adjusted odds ratio [AOR] = 14.37), clinical indicators or symptoms within four years of HIV diagnosis (AOR = 6.22), black race (AOR = 5.88), nonindicator clinical syndromes within 2 years of HIV diagnosis (AOR = 3.31), any mental disorder within 4 years of HIV diagnosis (AOR = 3.04), increasing service-connected time (AOR = 1.69), and older age (AOR = 1.12) were associated with HIV diagnosis among males. A prior history of a sexually transmitted infection (STI) was associated with post-HIV seroconversion STI (OR(M-H) = 4.10). Similarly, a prior history of mental disorder was associated with post-HIV seroconversion mental disorder (OR(M-H) = 4.98). Forty-seven (18%) male cases were hospitalized at least once after HIV diagnosis; infectious diseases, and mental disorders made up 53% of initial admissions.
CONCLUSIONS: HIV seroconversion was associated with increased health care-seeking behavior, STIs, and mental disorders, some of which may be amenable to screening. The higher STI rate after HIV diagnosis may partially be a consequence of monitoring, but secondary transmission of STI and possibly HIV require further definition and subsequent tailored preventive interventions
Improved reference genome for the domestic horse increases assembly contiguity and composition
Recent advances in genomic sequencing technology and computational assembly methods have allowed scientists to improve reference genome assemblies in terms of contiguity and composition. EquCab2, a reference genome for the domestic horse, was released in 2007. Although of equal or better quality compared to other first-generation Sanger assemblies, it had many of the shortcomings common to them. In 2014, the equine genomics research community began a project to improve the reference sequence for the horse, building upon the solid foundation of EquCab2 and incorporating new short-read data, long-read data, and proximity ligation data. Here, we present EquCab3. The count of non-N bases in the incorporated chromosomes is improved from 2.33 Gb in EquCab2 to 2.41 Gb in EquCab3. Contiguity has also been improved nearly 40-fold with a contig N50 of 4.5 Mb and scaffold contiguity enhanced to where all but one of the 32 chromosomes is comprised of a single scaffold
Recommended from our members
Making Connections - Envisioning Springfield\u27s North End
This work explores a service learning strategy in the context of the senior Urban Design Studio taught in the Department of Landscape Architecture and Regional Planning at the University of Massachusetts Amherst. The primary goal of this project is to stimulate a conversation in the neighborhoods of the North End, to develop green design strategies, to improve services and businesses for residents and the employees of local businesses, and to foster cultural engagement and interaction in the North End that will enhance the vibrancy, resilience, and quality of life of this urban community. Making connections - Envisioning Springfield\u27s North End proposes improved connectivity in a physical, cultural, and social sense will be key to attaining these goals and to engaging and synergizing individuals and community groups in the North End - residents, businesses, schools, churches, employers, and employees. Six sustainable learning and planning principles have emerged from this studio:
1. Input and interaction – Visioning workshops connect campus and community
2. Community-building art - Expression of place and people
3. Healthy living - Urban agriculture and education
4. Urban greenways – Abandoned railways and urban rivers and streams
5. Green infrastructure - Green streets as networks and structural framework
6. Sustainable urban form – Mixed use and pedestrian friendly neighborhood
Identification of Potential Non-invasive Biomarkers in Diastrophic Dysplasia
Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by pathogenic variants in the SLC26A2 gene encoding for a cell membrane sulfate/chloride antiporter crucial for sulfate uptake and glycosaminoglycan (GAG) sulfation. Research on a DTD animal model has suggested possible pharmacological treatment approaches. In view of future clinical trials, the identification of non-invasive biomarkers is crucial to assess the efficacy of treatments. Urinary GAG composition has been analyzed in several metabolic disorders including mucopolysaccharidoses. Moreover, the N-terminal fragment of collagen X, known as collagen X marker (CXM), is considered a real-time marker of endochondral ossification and growth velocity and was studied in individuals with achondroplasia and osteogenesis imperfecta. In this work, urinary GAG sulfation and blood CXM levels were investigated as potential biomarkers for individuals affected by DTD. Chondroitin sulfate disaccharide analysis was performed on GAGs isolated from urine by HPLC after GAG digestion with chondroitinase ABC and ACII, while CXM was assessed in dried blood spots. Results from DTD patients were compared with an age-matched control population. Undersulfation of urinary GAGs was observed in DTD patients with some relationship to the clinical severity and underlying SLC26A2 variants. Lower than normal CXM levels were observed in most patients, even if the marker did not show a clear pattern in our small patient cohort because CXM values are highly dependent on age, gender and growth velocity. In summary, both non-invasive biomarkers are promising assays targeting various aspects of the disorder including overall metabolism of sulfated GAGs and endochondral ossification
Powerful, Scalable and Resource-Efficient Meta-Analysis of Rare Variant Associations in Large Whole Genome Sequencing Studies
Meta-analysis of whole genome sequencing/whole exome sequencing (WGS/WES) studies provides an attractive solution to the problem of collecting large sample sizes for discovering rare variants associated with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for relatedness and population structure, can analyze both quantitative and dichotomous traits and boosts the power of rare variant tests by incorporating multiple variant functional annotations. Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR performs rare variant meta-analysis at scale and produces results comparable to using pooled data. Additionally, we identified several conditionally significant rare variant associations with lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through meta-analysis of TOPMed WGS data and UK Biobank WES data of ~200,000 samples
A Framework For Detecting Noncoding Rare-Variant associations of Large-Scale Whole-Genome Sequencing Studies
Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 toPMed samples. We also analyze five non-lipid toPMed traits