5 research outputs found

    Creating a Reading Culture in an Academic Library

    Get PDF
    Aliteracy is becoming a growing concern on college campuses, including East Tennessee State University (ETSU). Several years ago, a colleague emailed the librarians at Sherrod Library an article from the online edition of the Washington Post (Weeks 2001) about a graduate student at Park University in Kansas City who was making it through school by skimming texts, drawing information and themes from dust jackets, watching television, and listening to audio books. Jeremy Spreitzer, the focus of the Washington Post story, represented the growing number of students in the United States who are aliterate. After discussing this article at our faculty meeting, we came to the conclusion that there were a number of students on our campus that fit this description, and that the library must be creative in encouraging students to cultivate a lifelong reading habit

    2016 Research & Innovation Day Program

    Get PDF
    A one day showcase of applied research, social innovation, scholarship projects and activities.https://first.fanshawec.ca/cri_cripublications/1003/thumbnail.jp

    HLA-DQA1 and PLCG2 Are Candidate Risk Loci for Childhood-Onset Steroid-Sensitive Nephrotic Syndrome

    No full text
    Steroid-sensitive nephrotic syndrome (SSNS) accounts for \u3e80% of cases of nephrotic syndrome in childhood. However, the etiology and pathogenesis of SSNS remain obscure. Hypothesizing that coding variation may underlie SSNS risk, we conducted an exome array association study of SSNS. We enrolled a discovery set of 363 persons (214 South Asian children with SSNS and 149 controls) and genotyped them using the Illumina HumanExome Beadchip. Four common single nucleotide polymorphisms (SNPs) in HLA-DQA1 and HLA-DQB1 (rs1129740, rs9273349, rs1071630, and rs1140343) were significantly associated with SSNS at or near the Bonferroni-adjusted P value for the number of single variants that were tested (odds ratio, 2.11; 95% confidence interval, 1.56 to 2.86; P=1.68×10(-6) (Fisher exact test). Two of these SNPs-the missense variants C34Y (rs1129740) and F41S (rs1071630) in HLA-DQA1-were replicated in an independent cohort of children of white European ancestry with SSNS (100 cases and ≤589 controls; P=1.42×10(-17)). In the rare variant gene set-based analysis, the best signal was found in PLCG2 (P=7.825×10(-5)). In conclusion, this exome array study identified HLA-DQA1 and PLCG2 missense coding variants as candidate loci for SSNS. The finding of a MHC class II locus underlying SSNS risk suggests a major role for immune response in the pathogenesis of SSNS

    HLA-DQA1 and PLCG2 Are Candidate Risk Loci for Childhood-Onset Steroid-Sensitive Nephrotic Syndrome.

    No full text
    Steroid-sensitive nephrotic syndrome (SSNS) accounts for \u3e80% of cases of nephrotic syndrome in childhood. However, the etiology and pathogenesis of SSNS remain obscure. Hypothesizing that coding variation may underlie SSNS risk, we conducted an exome array association study of SSNS. We enrolled a discovery set of 363 persons (214 South Asian children with SSNS and 149 controls) and genotyped them using the Illumina HumanExome Beadchip. Four common single nucleotide polymorphisms (SNPs) in HLA-DQA1 and HLA-DQB1 (rs1129740, rs9273349, rs1071630, and rs1140343) were significantly associated with SSNS at or near the Bonferroni-adjusted P value for the number of single variants that were tested (odds ratio, 2.11; 95% confidence interval, 1.56 to 2.86; P=1.68×10(-6) (Fisher exact test). Two of these SNPs-the missense variants C34Y (rs1129740) and F41S (rs1071630) in HLA-DQA1-were replicated in an independent cohort of children of white European ancestry with SSNS (100 cases and ≤589 controls; P=1.42×10(-17)). In the rare variant gene set-based analysis, the best signal was found in PLCG2 (P=7.825×10(-5)). In conclusion, this exome array study identified HLA-DQA1 and PLCG2 missense coding variants as candidate loci for SSNS. The finding of a MHC class II locus underlying SSNS risk suggests a major role for immune response in the pathogenesis of SSNS

    HLA-DQA1 and PLCG2 Are Candidate Risk Loci for Childhood-Onset Steroid-Sensitive Nephrotic Syndrome

    No full text
    Steroid-sensitive nephrotic syndrome (SSNS) accounts for \u3e80% of cases of nephrotic syndrome in childhood. However, the etiology and pathogenesis of SSNS remain obscure. Hypothesizing that coding variation may underlie SSNS risk, we conducted an exome array association study of SSNS. We enrolled a discovery set of 363 persons (214 South Asian children with SSNS and 149 controls) and genotyped them using the Illumina HumanExome Beadchip. Four common single nucleotide polymorphisms (SNPs) in HLA-DQA1 and HLA-DQB1 (rs1129740, rs9273349, rs1071630, and rs1140343) were significantly associated with SSNS at or near the Bonferroni-adjusted P value for the number of single variants that were tested (odds ratio, 2.11; 95% confidence interval, 1.56 to 2.86; P=1.68×10(-6) (Fisher exact test). Two of these SNPs-the missense variants C34Y (rs1129740) and F41S (rs1071630) in HLA-DQA1-were replicated in an independent cohort of children of white European ancestry with SSNS (100 cases and ≤589 controls; P=1.42×10(-17)). In the rare variant gene set-based analysis, the best signal was found in PLCG2 (P=7.825×10(-5)). In conclusion, this exome array study identified HLA-DQA1 and PLCG2 missense coding variants as candidate loci for SSNS. The finding of a MHC class II locus underlying SSNS risk suggests a major role for immune response in the pathogenesis of SSNS
    corecore