76 research outputs found
Redeploying β-lactam antibiotics as a novel antivirulence strategy for the treatment of methicillin-resistant <i>Staphylococcus aureus</i> infections
Innovative approaches to the use of existing antibiotics is an important strategy in efforts to address the escalating antimicrobial resistance crisis. We report a new approach to the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections by demonstrating that oxacillin can be used to significantly attenuate the virulence of MRSA despite the pathogen being resistant to this drug. Using mechanistic in vitro assays and in vivo models of invasive pneumonia and sepsis, we show that oxacillin-treated MRSA strains are significantly attenuated in virulence. This effect is based primarily on the oxacillin-dependent repression of the accessory gene regulator quorum-sensing system and altered cell wall architecture, which in turn lead to increased susceptibility to host killing of MRSA. Our data indicate that beta-lactam antibiotics should be included in the treatment regimen as an adjunct antivirulence therapy for patients with MRSA infections. This would represent an important change to current clinical practice for treatment of MRSA infection, with the potential to significantly improve patient outcomes in a safe, cost-effective manner
Recombination-mediated remodelling of host-pathogen interactions during Staphylococcus aureus niche adaptation
Large-scale recombination events have led to the emergence of epidemic clones of several major bacterial pathogens. However, the functional impact of the recombination on clonal success is not understood. Here, we identified a novel widespread hybrid clone (ST71) of livestock-associated Staphylococcus aureus that evolved from an ancestor belonging to the major bovine lineage CC97, through multiple large-scale recombination events with other S. aureus lineages occupying the same ruminant niche. The recombination events, affecting a 329 kb region of the chromosome spanning the origin of replication, resulted in allele replacement and loss or gain of an array of genes influencing host–pathogen interactions. Of note, molecular functional analyses revealed that the ST71 hybrid clone has acquired multiple novel pathogenic traits associated with acquired and innate immune evasion and bovine extracellular matrix adherence. These findings provide a paradigm for the impact of large-scale recombination events on the rapid evolution of bacterial pathogens within defined ecological niches
Methicillin Resistance Alters the Biofilm Phenotype and Attenuates Virulence in Staphylococcus aureus Device-Associated Infections
Clinical isolates of Staphylococcus aureus can express biofilm phenotypes promoted by the major cell wall autolysin and the fibronectin-binding proteins or the icaADBC-encoded polysaccharide intercellular adhesin/poly-N-acetylglucosamine (PIA/PNAG). Biofilm production in methicillin-susceptible S. aureus (MSSA) strains is typically dependent on PIA/PNAG whereas methicillin-resistant isolates express an Atl/FnBP-mediated biofilm phenotype suggesting a relationship between susceptibility to β-lactam antibiotics and biofilm. By introducing the methicillin resistance gene mecA into the PNAG-producing laboratory strain 8325-4 we generated a heterogeneously resistant (HeR) strain, from which a homogeneous, high-level resistant (HoR) derivative was isolated following exposure to oxacillin. The HoR phenotype was associated with a R602H substitution in the DHHA1 domain of GdpP, a recently identified c-di-AMP phosphodiesterase with roles in resistance/tolerance to β-lactam antibiotics and cell envelope stress. Transcription of icaADBC and PNAG production were impaired in the 8325-4 HoR derivative, which instead produced a proteinaceous biofilm that was significantly inhibited by antibodies against the mecA-encoded penicillin binding protein 2a (PBP2a). Conversely excision of the SCCmec element in the MRSA strain BH1CC resulted in oxacillin susceptibility and reduced biofilm production, both of which were complemented by mecA alone. Transcriptional activity of the accessory gene regulator locus was also repressed in the 8325-4 HoR strain, which in turn was accompanied by reduced protease production and significantly reduced virulence in a mouse model of device infection. Thus, homogeneous methicillin resistance has the potential to affect agr- and icaADBC-mediated phenotypes, including altered biofilm expression and virulence, which together are consistent with the adaptation of healthcare-associated MRSA strains to the antibiotic-rich hospital environment in which they are frequently responsible for device-related infections in immuno-compromised patients
Epistatic Relationships between sarA and agr in Staphylococcus aureus Biofilm Formation
Background: The accessory gene regulator (agr) and staphylococcal accessory regulator (sarA) play opposing roles in Staphylococcus aureus biofilm formation. There is mounting evidence to suggest that these opposing roles are therapeutically relevant in that mutation of agr results in increased biofilm formation and decreased antibiotic susceptibility while mutation of sarA has the opposite effect. To the extent that induction of agr or inhibition of sarA could potentially be used to limit biofilm formation, this makes it important to understand the epistatic relationships between these two loci.
Methodology/Principal Findings: We generated isogenic sarA and agr mutants in clinical isolates of S. aureus and assessed the relative impact on biofilm formation. Mutation of agr resulted in an increased capacity to forma biofilmin the 8325-4 laboratory strain RN6390 but had little impact in clinical isolates S. aureus. In contrast, mutation of sarA resulted in a reduced capacity to form a biofilm in all clinical isolates irrespective of the functional status of agr. This suggests that the regulatory role of sarA in biofilm formation is independent of the interaction between sarA and agr and that sarA is epistatic to agr in this context. This was confirmed by demonstrating that restoration of sarA function restored the ability to form a biofilm even in the corresponding agr mutants. Mutation of sarA in clinical isolates also resulted in increased production of extracellular proteases and extracellular nucleases, both of which contributed to the biofilm-deficient phenotype of sarA mutants. However, studies comparing different strains with and without proteases inhibitors and/or mutation of the nuclease genes demonstrated that the agr-independent, sarA-mediated repression of extracellular proteases plays a primary role in this regard.
Conclusions and Significance: The results we report suggest that inhibitors of sarA-mediated regulation could be used to limit biofilm formation in S. aureus and that the efficacy of such inhibitors would not be limited by spontaneous mutation of agr in the human host
Tandem amplification of SCCmec can drive high level methicillin resistance in MRSA
Hospital-associated methicillin-resistant Staphylococcus aureus (MRSA) strains typically express high-level, homogeneous (HoR) beta-lactam resistance, whereas community-associated MRSA (CA-MRSA) more commonly express low-level heterogeneous (HeR) resistance. Expression of the HoR phenotype typically requires both increased expression of the mecA gene, carried on the staphylococcal cassette chromosome mec element (SCCmec), and additional mutational event(s) elsewhere on the chromosome. Here the oxacillin concentration in a chemostat culture of the CA-MRSA strain USA300 was increased from 8 mu g/ml to 130 mu g/ml over 13 days to isolate highly oxacillin-resistant derivatives. A stable, small-colony variant, designated HoR34, which had become established in the chemostat culture was found to have acquired mutations in gdpP, clpX, guaA, and camS. Closer inspection of the genome sequence data further revealed that reads covering SCCmec were similar to 10 times overrepresented compared to other parts of the chromosome. Quantitative PCR (qPCR) confirmed &gt;10-fold-higher levels of mecA DNA on the HoR34 chromosome, and MinION genome sequencing verified the presence of 10 tandem repeats of the SCCmec element. qPCR further demonstrated that subculture of HoR34 in various concentrations of oxacillin (0 to 100 mu g/ml) was accompanied by accordion-like contraction and amplification of the SCCmec element. Although slower growing than strain USA300, HoR34 outcompeted the parent strain in the presence of subinhibitory oxacillin. These data identify tandem amplification of the SCCmec element as a new mechanism of high-level methicillin resistance in MRSA, which may provide a competitive advantage for MRSA under antibiotic selection
into the storm : chasing the opportunistic pathogen staphylococcus aureus from skin colonisation to life-threatening infections
Colonisation of the human skin by Staphylococcus aureus is a precursor for a variety of infections ranging from boils to sepsis and pneumonia. The rapid emergence of methicillin-resistant S. aureus following the clinical introduction of this antimicrobial drug and reports of resistance to all currently used anti-staphylococcal drugs has added to its formidable reputation. S. aureus survival on the skin and in vivo virulence is underpinned by a remarkable environmental adaptability, made possible by highly orchestrated regulation of gene expression and a capacity to undertake genome remodelling. Depending on the ecological or infection niche, controlled expression of a variety of adhesins can be initiated to facilitate adherence to extracellular matrix proteins, survival against desiccation or biofilm accumulation on implanted medical devices and host tissue. These adherence mechanisms complement toxin and enzyme production, immune evasion strategies, and antibiotic resistance and tolerance to collectively thwart efforts to develop reliable antimicrobial drug regimens and an effective S. aureus vaccine
Evidence for icaADBC-Independent Biofilm Development Mechanism in Methicillin-Resistant Staphylococcus aureus Clinical Isolates
Synthesis of a polysaccharide adhesin by icaADBC-encoded enzymes is currently the best-understood mechanism of staphylococcal biofilm development. In four methicillin-resistant Staphylococcus aureus isolates, environmental activation of icaADBC did not always correlate with increased biofilm production. Moreover, glucose-mediated biofilm development in these isolates was icaADBC independent. Apparently, an environmentally regulated, ica-independent mechanism(s) of biofilm development exists in S. aureus clinical isolates
icaR Encodes a Transcriptional Repressor Involved in Environmental Regulation of ica Operon Expression and Biofilm Formation in Staphylococcus epidermidis
Biofilm formation in Staphylococcus epidermidis is dependent upon the ica operon-encoded polysaccharide intercellular adhesin, which is subject to phase-variable and environmental regulation. The icaR gene, located adjacent to the ica operon, appears to be a member of the tetR family of transcriptional regulators. In the reference strain RP62A, reversible inactivation of the ica operon by IS256 accounts for 25 to 33% of phase variants. In this study, icaA and icaR regulation were compared in RP62A and a biofilm-forming clinical isolate, CSF41498, in which IS256 is absent. Predictably, ica operon expression was detected only in wild-type CSF41498 and RP62A but not in non-IS256-generated phase variants. In contrast, the icaR gene was not expressed in RP62A phase variants but was expressed in CSF41498 variants. An icaR::Em(r) insertion mutation in CSF41498 resulted in an at least a 5.8-fold increase in ica operon expression but did not significantly alter regulation of the icaR gene itself. Activation of ica operon transcription by ethanol in CSF41498 was icaR dependent. In contrast, a small but significant induction of ica by NaCl and glucose (NaCl-glucose) was observed in the icaR::Em(r) mutant. In addition, transcription of the icaR gene itself was not significantly affected by NaCl-glucose but was repressed by ethanol. Expression of the ica operon was induced by ethanol or NaCl-glucose in phase variants of CSF41498 (icaR(+)) but not in RP62A variants (icaR deficient). These data indicate that icaR encodes a repressor of ica operon transcription required for ethanol but not NaCl-glucose activation of ica operon expression and biofilm formation
- …