258 research outputs found

    The FLASHES Survey I: Integral Field Spectroscopy of the CGM around 48 z=2.33.1z=2.3-3.1 QSOs

    Full text link
    We present the pilot study component of the Fluorescent Lyman-Alpha Structures in High-z Environments (FLASHES) Survey; the largest integral-field spectroscopy survey to date of the circumgalactic medium at z=2.33.1z=2.3-3.1. We observed 48 quasar fields between 2015 and 2018 with the Palomar Cosmic Web Imager (Matuszewski et al. 2010). Extended HI Lyman-α\mathrm{\alpha} emission is discovered around 42/48 of the observed quasars, ranging in projected, flux-weighted radius from 21-71 proper kiloparsecs (pkpc), with 26 nebulae exceeding 100 pkpc100\mathrm{~pkpc} in effective diameter. The circularly averaged surface brightness radial profile peaks at a maximum of 1×1017 erg s1 cm2 arcsec2\mathrm{1\times 10^{-17}~erg~s^{-1}~cm^{-2}~arcsec^{-2}} (2×1015 erg s1 cm2 arcsec22\times10^{-15}~\mathrm{erg~s^{-1}~cm^{-2}~arcsec^{-2}} adjusted for cosmological dimming) and luminosities range from 1.9×1043 erg s11.9\times10^{43}~\mathrm{erg~s^{-1}} to 14.1×1043 erg s1-14.1\times10^{43}~\mathrm{erg~s^{-1}}. The emission appears to have a highly eccentric morphology and a maximum covering factor of 50%50\% (60%60\% for giant nebulae). On average, the nebular spectra are red-shifted with respect to both the systemic redshift and Lyα\alpha peak of the quasar spectrum. The integrated spectra of the nebulae mostly have single or double-peaked line shapes with global dispersions ranging from 167 km s1167~\mathrm{km~s^{-1}} to 690 km s1690~\mathrm{km~s^{-1}}, though the individual (Gaussian) components of lines with complex shapes mostly appear to have dispersions 400\leq 400 km s1\mathrm{km~s^{-1}}, and the flux-weighted velocity centroids of the lines vary by thousands of km s1 \mathrm{km~s^{-1}} with respect to the systemic QSO redshifts. Finally, the root-mean-square velocities of the nebulae are found to be consistent with gravitational motions expected in dark matter halos of mass Mh1012.5M\mathrm{M_h \simeq10^{12.5} M_\odot}. We compare these results to existing surveys at both higher and lower redshift

    Training response inhibition to food is associated with weight loss and reduced energy intake (article)

    Get PDF
    AcceptedNatalia S Lawrence University of Exeter Psychology Exeter Devon EX4 4QG United KingdomAccompanying dataset available at: http://hdl.handle.net/10871/17621Note to users: Uncorrected proofs are Articles in Press that have been copy edited and formatted, but have not been finalized yet. They still need to be proof-read and corrected by the author(s) and the text could still change before final publication. Although uncorrected proofs do not have all bibliographic details available yet, they can already be cited using the year of online publication and the DOI, as follows: author(s), article title, Publication (year), DOI. Please consult the journal's reference style for the exact appearance of these elements, abbreviation of journal names and use of punctuation. When the final article is assigned to an volumes/issues of the Publication, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the Publication. The date the article was first made available online will be carried over.The majority of adults in the UK and US are overweight or obese due to multiple factors including excess energy intake. Training people to inhibit simple motor responses (key presses) to high-energy density food pictures reduces intake in laboratory studies. We examined whether online response inhibition training reduced real-world food consumption and weight in a community sample of adults who were predominantly overweight or obese (N = 83). Participants were allocated in a randomised, double-blind design to receive four 10-minute sessions of either active or control go/no-go training in which either high-energy density snack foods (active) or non-food stimuli (control) were associated with no-go signals. Participants’ weight, energy intake (calculated from 24-hour food diaries), daily snacking frequency and subjective food evaluations were measured for one week pre- and post-intervention. Participants also provided self-reported weight and monthly snacking frequency at pre-intervention screening, and one month and six months after completing the study. Participants in the active relative to control condition showed significant weight loss, reductions in daily energy intake and a reduction in rated liking of high-energy density (no-go) foods from the pre- to post-intervention week. There were no changes in self-reported daily snacking frequency. At longer-term follow-up, the active group showed significant reductions in self-reported weight at six months, whilst both groups reported significantly less snacking at one- and six-months. Excellent rates of adherence (97%) and positive feedback about the training suggest that this intervention is acceptable and has the potential to improve public health by reducing energy intake and overweight.National Institute for Health and Research Exeter Clinical Research FacilityWellcome TrustEuropean Research Counci

    Keck/Palomar Cosmic Web Imagers (KCWI/PCWI) Reveal an Enormous Lyα\alpha Nebula in an Extremely Overdense QSO Pair Field at z=2.45z=2.45

    Get PDF
    Enormous Lyα\alpha nebulae (ELANe) represent the extrema of Lyα\alpha nebulosities. They have detected extents of >200>200 kpc in Lyα\alpha and Lyα\alpha luminosities >1044>10^{44} erg s1^{-1}. The ELAN population is an ideal laboratory to study the interactions between galaxies and the intergalactic/circumgalactic medium (IGM/CGM) given their brightness and sizes. The current sample size of ELANe is still very small, and the few z2z\approx2 ELANe discovered to date are all associated with local overdensities of active galactic nuclei (AGNs). Inspired by these results, we have initiated a survey of ELANe associated with QSO pairs using the Palomar and Keck Cosmic Web Imagers (PCWI/KCWI). In this letter, we present our first result: the discovery of ELAN0101+0201 associated with a QSO pair at z=2.45z=2.45. Our PCWI discovery data shows that, above a 2-σ\sigma surface brightness of 1.2×10171.2\times10^{-17} \sbunit, the end-to-end size of ELAN0101+0201 is 232\gtrsim 232 kpc. We have conducted follow-up observations using KCWI, resolving multiple Lyα\alpha emitting sources within the rectangular field-of-view of 130×165\approx 130\times165 projected kpc2^2, and obtaining their emission line profiles at high signal-to-noise ratios. Combining both KCWI and PCWI, our observations confirm that ELAN0101+0201 resides in an extremely overdense environment. Our observations further support that a large amount of cool (T104T\sim10^4K) gas could exist in massive halos (M1013\gtrsim10^{13}M_\odot) at z2z\approx2. Future observations on a larger sample of similar systems will provide statistics of how cool gas is distributed in massive overdensities at high-redshift and strongly constrain the evolution of the intracluster medium (ICM).Comment: Submitted to Astrophysical Journal Letter, 9 pages, 4 figures, Comments Welcom

    Training response inhibition to food is associated with weight loss and reduced energy intake (dataset)

    Get PDF
    Full dataset in SPSS and Excel to accompany the manuscript described above.Manuscript available via: https://ore.exeter.ac.uk/repository/handle/10871/17858Dataset to accompany the above manuscript (abstract): The majority of adults in the UK and US are overweight or obese due to multiple factors including excess energy intake. Training people to inhibit simple motor responses (key presses) to high-energy density food pictures reduces intake in laboratory studies. We examined whether online response inhibition training reduced real-world food consumption and weight in a community sample of adults who were predominantly overweight or obese (N = 83). Participants were allocated in a randomised, double-blind design to receive four 10-minute sessions of either active or control go/no-go training in which either high-energy density snack foods (active) or non-food stimuli (control) were associated with no-go signals. Participants’ weight, energy intake (calculated from 24-hour food diaries), daily snacking frequency and subjective food evaluations were measured for one week pre- and post-intervention. Participants also provided self-reported weight and monthly snacking frequency at pre-intervention screening, and one month and six months after completing the study. Participants in the active relative to control condition showed significant weight loss, reductions in daily energy intake and a reduction in rated liking of high-energy density (no-go) foods from the pre- to post-intervention week. There were no changes in self-reported daily snacking frequency. At longer-term follow-up, the active group showed significant reductions in self-reported weight at six months, whilst both groups reported significantly less snacking at one- and six-months. Excellent rates of adherence (97%) and positive feedback about the training suggest that this intervention is acceptable and has the potential to improve public health by reducing energy intake and overweight.Wellcome Trus

    FIREBall-2: advancing TRL while doing proof-of-concept astrophysics on a suborbital platform

    Get PDF
    Here we discuss advances in UV technology over the last decade, with an emphasis on photon counting, low noise, high efficiency detectors in sub-orbital programs. We focus on the use of innovative UV detectors in a NASA astrophysics balloon telescope, FIREBall-2, which successfully flew in the Fall of 2018. The FIREBall-2 telescope is designed to make observations of distant galaxies to understand more about how they evolve by looking for diffuse hydrogen in the galactic halo. The payload utilizes a 1.0-meter class telescope with an ultraviolet multi-object spectrograph and is a joint collaboration between Caltech, JPL, LAM, CNES, Columbia, the University of Arizona, and NASA. The improved detector technology that was tested on FIREBall-2 can be applied to any UV mission. We discuss the results of the flight and detector performance. We will also discuss the utility of sub-orbital platforms (both balloon payloads and rockets) for testing new technologies and proof-of-concept scientific ideas

    FLASHES Survey. I. Integral Field Spectroscopy of the CGM around 48 z ≃ 2.3–3.1 QSOs

    Get PDF
    We present the pilot study of the Fluorescent Lyman-Alpha Structures in High-z Environments Survey; the largest integral field spectroscopy survey to date of the circumgalactic medium at z = 2.3–3.1. We observed 48 quasar fields with the Palomar Cosmic Web Imager to an average (2σ) limiting surface brightness of 6 × 10⁻¹⁸ erg s⁻¹ cm⁻² arcsec⁻² (in a 1'' aperture and ~20 Å bandwidth). Extended H I Lyα emission is discovered around 37/48 of the observed quasars, ranging in projected radius from 14 to 55 proper kiloparsecs (pkpc), with one nebula exceeding 100 pkpc in effective diameter. The dimming-adjusted circularly averaged surface brightness profile peaks at 1 × 10⁻¹⁵ erg s⁻¹ cm⁻² arcsec⁻² at R⊥ ~ 20 pkpc and integrated luminosities range from 0.4 to 9.4 × 10⁴³ erg s⁻¹. The emission appears to have an eccentric morphology and an average covering factor of ~30%–40% at small radii. On average, the nebular spectra are redshifted with respect to both the systemic redshift and Lyα peak of the quasar spectrum. The integrated spectra of the nebulae mostly have single- or double-peaked profiles with global dispersions ranging from 143 to 708 km s⁻¹, though the individual Gaussian components of lines with complex shapes mostly have dispersions ≤400 km s⁻¹, and the flux-weighted velocity centroids of the lines vary by thousands of km s⁻¹ with respect to the QSO redshifts. Finally, the root-mean-square velocities of the nebulae are found to be consistent with those expected from gravitational motions in dark matter halos of mass Log₁₀(M_h[M⊙]) ≃ 12.2^(+0.7)_(-1.2). We compare these results to existing surveys at higher and lower redshift
    corecore