3,605 research outputs found
GravEn: Software for the simulation of gravitational wave detector network response
Physically motivated gravitational wave signals are needed in order to study
the behaviour and efficacy of different data analysis methods seeking their
detection. GravEn, short for Gravitational-wave Engine, is a MATLAB software
package that simulates the sampled response of a gravitational wave detector to
incident gravitational waves. Incident waves can be specified in a data file or
chosen from among a group of pre-programmed types commonly used for
establishing the detection efficiency of analysis methods used for LIGO data
analysis. Every aspect of a desired signal can be specified, such as start time
of the simulation (including inter-sample start times), wave amplitude, source
orientation to line of sight, location of the source in the sky, etc. Supported
interferometric detectors include LIGO, GEO, Virgo and TAMA.Comment: 10 Pages, 3 Figures, Presented at the 10th Gravitational Wave Data
Analysis Workshop (GWDAW-10), 14-17 December 2005 at the University of Texas,
Brownsvill
In vivo cranial bone strain and bite force in the agamid lizard Uromastyx geyri
In vivo bone strain data are the most direct evidence of deformation and strain regimes in the vertebrate cranium during feeding and can provide important insights into skull morphology. Strain data have been collected during feeding across a wide range of mammals; in contrast, in vivo cranial bone strain data have been collected from few sauropsid taxa. Here we present bone strain data recorded from the jugal of the herbivorous agamid lizard Uromastyx geyri along with simultaneously recorded bite force. Principal and shear strain magnitudes in Uromastyx geyri were lower than cranial bone strains recorded in Alligator mississippiensis, but higher than those reported from herbivorous mammals. Our results suggest that variations in principal strain orientations in the facial skeleton are largely due to differences in feeding behavior and bite location, whereas food type has little impact on strain orientations. Furthermore, mean principal strain orientations differ between male and female Uromastyx during feeding, potentially because of sexual dimorphism in skull morphology
Precise calibration of LIGO test mass actuators using photon radiation pressure
Precise calibration of kilometer-scale interferometric gravitational wave
detectors is crucial for source localization and waveform reconstruction. A
technique that uses the radiation pressure of a power-modulated auxiliary laser
to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a
so-called photon calibrator, has been demonstrated previously and has recently
been implemented on the LIGO detectors. In this article, we discuss the
inherent precision and accuracy of the LIGO photon calibrators and several
improvements that have been developed to reduce the estimated voice coil
actuator calibration uncertainties to less than 2 percent (1-sigma). These
improvements include accounting for rotation-induced apparent length variations
caused by interferometer and photon calibrator beam centering offsets, absolute
laser power measurement using temperature-controlled InGaAs photodetectors
mounted on integrating spheres and calibrated by NIST, minimizing errors
induced by localized elastic deformation of the mirror surface by using a
two-beam configuration with the photon calibrator beams symmetrically displaced
about the center of the optic, and simultaneously actuating the test mass with
voice coil actuators and the photon calibrator to minimize fluctuations caused
by the changing interferometer response. The photon calibrator is able to
operate in the most sensitive interferometer configuration, and is expected to
become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit
Precise calibration of LIGO test mass actuators using photon radiation pressure
Precise calibration of kilometer-scale interferometric gravitational wave
detectors is crucial for source localization and waveform reconstruction. A
technique that uses the radiation pressure of a power-modulated auxiliary laser
to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a
so-called photon calibrator, has been demonstrated previously and has recently
been implemented on the LIGO detectors. In this article, we discuss the
inherent precision and accuracy of the LIGO photon calibrators and several
improvements that have been developed to reduce the estimated voice coil
actuator calibration uncertainties to less than 2 percent (1-sigma). These
improvements include accounting for rotation-induced apparent length variations
caused by interferometer and photon calibrator beam centering offsets, absolute
laser power measurement using temperature-controlled InGaAs photodetectors
mounted on integrating spheres and calibrated by NIST, minimizing errors
induced by localized elastic deformation of the mirror surface by using a
two-beam configuration with the photon calibrator beams symmetrically displaced
about the center of the optic, and simultaneously actuating the test mass with
voice coil actuators and the photon calibrator to minimize fluctuations caused
by the changing interferometer response. The photon calibrator is able to
operate in the most sensitive interferometer configuration, and is expected to
become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit
Recommended from our members
Sixteen years of bathymetry and waves at San Diego beaches.
Sustained, quantitative observations of nearshore waves and sand levels are essential for testing beach evolution models, but comprehensive datasets are relatively rare. We document beach profiles and concurrent waves monitored at three southern California beaches during 2001-2016. The beaches include offshore reefs, lagoon mouths, hard substrates, and cobble and sandy (medium-grained) sediments. The data span two energetic El Niño winters and four beach nourishments. Quarterly surveys of 165 total cross-shore transects (all sites) at 100âm alongshore spacing were made from the backbeach to 8âm depth. Monthly surveys of the subaerial beach were obtained at alongshore-oriented transects. The resulting dataset consists of (1) raw sand elevation data, (2) gridded elevations, (3) interpolated elevation maps with error estimates, (4) beach widths, subaerial and total sand volumes, (5) locations of hard substrate and beach nourishments, (6) water levels from a NOAA tide gauge (7) wave conditions from a buoy-driven regional wave model, and (8) time periods and reaches with alongshore uniform bathymetry, suitable for testing 1-dimensional beach profile change models
âThey Called Them Communists ThenââŠâWhat D'You Call âEm Now?ââŠâInsurgents?â. Narratives of British Military Expatriates in the Context of the New Imperialism
This paper addresses the question of the extent to which the colonial past provides material for contemporary actors' understanding of difference. The research from which the paper is drawn involved interview and ethnographic work in three largely white working-class estates in an English provincial city. For this paper we focus on ten life-history interviews with older participants who had spent some time abroad in the British military. Our analysis adopts a postcolonial framework because research participants' current constructions of an amorphous 'Other' (labelled variously as black people, immigrants, foreigners, asylum-seekers or Muslims) reveal strong continuities with discourses deployed by the same individuals to narrate their past experiences of living and working as either military expatriates or spouses during British colonial rule. Theoretically, the paper engages with the work of Frantz Fanon and Edward Said. In keeping with a postcolonial approach, we work against essentialised notions of identity based on 'race' or class. Although we establish continuity between white working-class military emigration in the past and contemporary racialised discourses, we argue that the latter are not class-specific, being as much the creations of the middle-class media and political elite
Burkholderia pseudomallei traced to water treatment plant in Australia.
Burkholderia pseudomallei was isolated from environmental specimens 1 year after an outbreak of acute melioidosis in a remote coastal community in northwestern Australia. B. pseudomallei was isolated from a water storage tank and from spray formed in a pH-raising aerator unit. Pulsed-field gel electrophoresis confirmed the aerator and storage tank isolates were identical to the outbreak strain, WKo97
- âŠ