61 research outputs found

    DRAM-3 modulates autophagy and promotes cell survival in the absence of glucose

    Get PDF
    Macroautophagy is a membrane-trafficking process that delivers cytoplasmic constituents to lysosomes for degradation. The process operates under basal conditions as a mechanism to turnover damaged or misfolded proteins and organelles. As a result, it has a major role in preserving cellular integrity and viability. In addition to this basal function, macroautophagy can also be modulated in response to various forms of cellular stress, and the rate and cargoes of macroautophagy can be tailored to facilitate appropriate cellular responses in particular situations. The macroautophagy machinery is regulated by a group of evolutionarily conserved autophagy-related (ATG) proteins and by several other autophagy regulators, which either have tissue-restricted expression or operate in specific contexts. We report here the characterization of a novel autophagy regulator that we have termed DRAM-3 due to its significant homology to damage-regulated autophagy modulator (DRAM-1). DRAM-3 is expressed in a broad spectrum of normal tissues and tumor cells, but different from DRAM-1, DRAM-3 is not induced by p53 or DNA-damaging agents. Immunofluorescence studies revealed that DRAM-3 localizes to lysosomes/autolysosomes, endosomes and the plasma membrane, but not the endoplasmic reticulum, phagophores, autophagosomes or Golgi, indicating significant overlap with DRAM-1 localization and with organelles associated with macroautophagy. In this regard, we further proceed to show that DRAM-3 expression causes accumulation of autophagosomes under basal conditions and enhances autophagic flux. Reciprocally, CRISPR/Cas9-mediated disruption of DRAM-3 impairs autophagic flux confirming that DRAM-3 is a modulator of macroautophagy. As macroautophagy can be cytoprotective under starvation conditions, we also tested whether DRAM-3 could promote survival on nutrient deprivation. This revealed that DRAM-3 can repress cell death and promote long-term clonogenic survival of cells grown in the absence of glucose. Interestingly, however, this effect is macroautophagy-independent. In summary, these findings constitute the primary characterization of DRAM-3 as a modulator of both macroautophagy and cell survival under starvation conditions

    Phosphorylation of Puma modulates its apoptotic function by regulating protein stability

    Get PDF
    Puma is a potent BH3-only protein that antagonises anti-apoptotic Bcl-2 proteins, promotes Bax/Bak activation and has an essential role in multiple apoptotic models. Puma expression is normally kept very low, but can be induced by several transcription factors including p53, p73, E2F1 and FOXO3a, whereby it can induce an apoptotic response. As Puma can to bind and inactivate all anti-apoptotic members of the Bcl-2 family, its activity must be tightly controlled. We report here, for the first time, evidence that Puma is subject to post-translational control through phosphorylation. We show that Puma is phosphorylated at multiple sites, with the major site of phosphorylation being serine 10. Replacing serine 10 with alanine causes reduced Puma turnover and enhanced cell death. Interestingly, Puma turnover occurs through the proteasome, and substitution of serine 10 causes elevated Puma levels independently of macroautophagy, Bcl-2 family member binding, caspase activity and apoptotic death. We conclude, therefore, that phosphorylation of Puma at serine 10 promotes Puma turnover, represses Puma's cell death potential and promotes cell survival. Owing to the highly pro-apoptotic nature of Puma, these studies highlight an important additional regulatory step in the determination of cellular life or death

    Autophagy suppresses the formation of hepatocyte-derived cancer-initiating ductular progenitor cells in the liver

    Get PDF
    Hepatocellular carcinoma (HCC) is driven by repeated rounds of inflammation, leading to fibrosis, cirrhosis, and, ultimately, cancer. A critical step in HCC formation is the transition from fibrosis to cirrhosis, which is associated with a change in the liver parenchyma called ductular reaction. Here, we report a genetically engineered mouse model of HCC driven by loss of macroautophagy and hemizygosity of phosphatase and tensin homolog, which develops HCC involving ductular reaction. We show through lineage tracing that, following loss of autophagy, mature hepatocytes dedifferentiate into biliary-like liver progenitor cells (ductular reaction), giving rise to HCC. Furthermore, this change is associated with deregulation of yes-associated protein and transcriptional coactivator with PDZ-binding motif transcription factors, and the combined, but not individual, deletion of these factors completely reverses the dedifferentiation capacity and tumorigenesis. These findings therefore increase our understanding of the cell of origin of HCC development and highlight new potential points for therapeutic intervention

    E2F1 drives chemotherapeutic drug resistance via ABCG2

    Get PDF
    Multidrug resistance is a major barrier against successful chemotherapy, and this has been shown in vitro to be often caused by ATP-binding cassette (ABC) transporters. These transporters are frequently overexpressed in human cancers and confer an adverse prognosis in many common malignancies. The genetic factors, however, that initiate their expression in cancer are largely unknown. Here we report that the major multidrug transporter ABCG2 (BCRP/MXR) is directly and specifically activated by the transcription factor E2F1—a factor perturbed in the majority of human cancers. E2F1 regulates ABCG2 expression in multiple cell systems, and, importantly, we have identified a significant correlation between elevated E2F1 and ABCG2 expression in human lung cancers. We show that E2F1 causes chemotherapeutic drug efflux both in vitro and in vivo via ABCG2. Furthermore, the E2F1–ABCG2 axis suppresses chemotherapy-induced cell death that can be restored by the inhibition of ABCG2. These findings therefore identify a new axis in multidrug resistance and highlight a radical new function of E2F1 that is relevant to tumor therapy

    The role of RelA (p65) threonine 505 phosphorylation in the regulation of cell growth, survival, and migration

    Get PDF
    The NF-κB family of transcription factors is a well-established regulator of the immune and inflammatory responses and also plays a key role in other cellular processes, including cell death, proliferation, and migration. Conserved residues in the trans-activation domain of RelA, which can be posttranslationally modified, regulate divergent NF-κB functions in response to different cellular stimuli. Using rela(−/−) mouse embryonic fibroblasts reconstituted with RelA, we find that mutation of the threonine 505 (T505) phospho site to alanine has wide-ranging effects on NF-κB function. These include previously described effects on chemotherapeutic drug-induced apoptosis, as well as new roles for this modification in autophagy, cell proliferation, and migration. This last effect was associated with alterations in the actin cytoskeleton and expression of cellular migration–associated genes such as WAVE3 and α-actinin 4. We also define a new component of cisplatin-induced, RelA T505–dependent apoptosis, involving induction of NOXA gene expression, an effect explained at least in part through induction of the p53 homologue, p73. Therefore, in contrast to other RelA phosphorylation events, which positively regulate NF-κB function, we identified RelA T505 phosphorylation as a negative regulator of its ability to induce diverse cellular processes such as apoptosis, autophagy, proliferation, and migration

    Tissue-specific regulation of the rabbit 15-lipoxygenase gene in erythroid cells by a transcriptional silencer.

    No full text
    The 15-lipoxygenase (lox) gene is expressed in a tissue-specific manner, predominantly in erythroid cells but also in airway epithelial cells and eosinophils. We demonstrate in this report that the 5' flanking DNA of the 15-lox gene contains sequences which down-regulate its activity in a variety of non-erythroid cell lines but not in two erythroid cell lines. The element has characteristics of a transcriptional 'silencer' since it functions in both orientations. The main activity of the silencer has been mapped to the first 900 bp of 5' flanking DNA, which contains nine binding sites for a nuclear factor present in non-erythroid cells but not in erythroid cells. These binding sites have similar sequences and multiple copies of the binding sites confer tissue-specific down-regulation when attached to a minimal lox promoter fragment. The 5' flanking DNA also contains a cluster of three binding sites for the GATA family of transcription factors

    Loss of nuclear factor-KB is tumor promoting but does not substitute for loss of p53

    No full text
    Inactivation of apoptotic pathways is a common event in cancer. Two transcription factors that regulate apoptosis during tumorigenesis are p53 and nuclear factor (NF)-kappaB. Although NF-kappaB is generally considered a suppressor of cell death, we showed previously that NF-kappaB can contribute to p53-induced death. Here, we show that loss of p65, a critical subunit of NF-kappaB, can cause resistance to different agents that signal death through p53. Loss of p65 also enhances tumorigenesis induced by E1a and Ras. Unlike loss of p53, however, loss of p65 does not cause anchorage-independent growth or enable tumor development following expression of a single oncogene. These findings reaffirm the role of NF-kappaB in p53-induced death but show that its loss does not substitute for loss of p53 in tumor development. Moreover, this indicates that, although perhaps central to p53 function, loss of the ability to induce programmed cell death does not completely inactivate p53's tumor-suppressive effects

    Enhanced sensitivity of human oral tumours to the flavonol, morin, during cancer progression: involvement of the Akt and stress kinase pathways

    No full text
    Various naturally occurring flavonoids have been found to be cancer-protective in chemically induced animal cancer models and synthetic flavonoid derivatives are being tested for potential chemotherapeutic usefulness in clinical trials. This report demonstrates that human oral squamous carcinoma cells (SCC) are significantly more sensitive to growth inhibition by the naturally occurring flavonoid, morin (3,5,7,2',4'-pentahydroxyflavone) than normal oral mucosa (NOMC) (SCC IC(50) = 115 microM; NOMC IC(50) = 173 micro M; P for difference = 0.009). Structure/function comparisons indicate that both the 2' and 4' hydroxyl groups in morin are required for its tumour selectivity. Morin causes growth arrest in G(2)/M, without inducing apoptosis, and this is associated with induction of GADD45 and phosphorylation and inactivation of the cell cycle kinase, cdc2. Morin also has pleiotropic effects on kinase signalling pathways, including inhibition of activation of protein kinase B by mitogens (but not extracellular-regulated kinases 1/2) and activation of the stress pathway kinases, Jun N-terminal kinase and p38 kinase. p38 kinase activation is functionally important since inhibition of its activation by the specific inhibitor SB202190 partially prevented cell cycle arrest by morin. However, analysis of dose-response relationships reveals that the enhanced tumour sensitivity to morin may be explained by the fact that activation of AKT is inhibited at lower concentrations of morin in carcinomas than normal oral mucosa, whereas Jun N-terminal kinase, p38 kinase and GADD45 are all induced in parallel with the same dose-response curves in carcinomas and normal oral mucosa

    Analysis of DRAM-related proteins reveals evolutionarily conserved and divergent roles in the control of autophagy

    Get PDF
    Autophagy is a membrane-trafficking process that serves to deliver cytoplasmic proteins and organelles to the lysosome for degradation. The process is genetically defined and many of the factors involved are conserved from yeast to man. Recently, a number of new autophagy regulators have been defined, including the Damage-Regulated Autophagy Modulator (DRAM), which is a lysosomal protein that links autophagy and the tumor suppressor, p53. We describe here analysis of DRAM-related proteins which reveals evolutionary conservation and divergence of DRAM's role in autophagy. We report that humans have 5 other proteins that show significant homology to DRAM. The closest of these, which we have termed DRAM2, displays 45% identity and 67% conservation when compared to DRAM. Interestingly, although similar to DRAM in terms of homology, DRAM2 is different from DRAM as it not induced by p53 or p73. DRAM2 is also a lysosomal protein, but again unlike DRAM its overexpression does not modulate autophagy. In contrast to humans, the Drosophila genome only encodes one DRAM-like protein, which is approximately equal in similarity to human DRAM and DRAM2. This questions, therefore, whether DRAM function is conserved from fly to man or whether DRAM's capacity to regulate autophagy has evolved in higher eukaryotes. Expression of DmDRAM, however, clearly revealed an ability to modulate autophagy. This points, therefore, to a conserved role of DRAM in this process and that additional human proteins have more recently evolved which, while potentially sharing some similarities with DRAM, may not be as intrinsically connected to autophagy regulation
    • …
    corecore