1,022 research outputs found

    Coherence of terrestrial vertebrate species richness with external drivers across scales and taxonomic groups

    Get PDF
    Aim: Understanding connections between environment and biodiversity is crucial for conservation, identifying causes of ecosystem stress, and predicting population responses to changing environments. Explaining biodiversity requires an under-standing of how species richness and environment covary across scales. Here, we identify scales and locations at which biodiversity is generated and correlates with environment.Location: Full latitudinal range per continent.Time Period: Present day.Major Taxa Studied: Terrestrial vertebrates: all mammals, carnivorans, bats, song-birds, hummingbirds, amphibians.Methods: We describe the use of wavelet power spectra, cross- power and coherence for identifying scale-dependent trends across Earth's surface. Spectra reveal scale- and location-dependent coherence between species richness and topography (E), mean annual precipitation (Pn), temperature (Tm) and annual temperature range (ΔT).Results: >97% of species richness of taxa studied is generated at large scales, that is, wavelengths ≳103 km, with 30%–69% generated at scales ≳104 km. At these scales, richness tends to be highly coherent and anti-correlated with E and ΔT, and positively correlated with Pn and Tm. Coherence between carnivoran richness and ΔT is low across scales, implying insensitivity to seasonal temperature variations. Conversely, amphibian richness is strongly anti-correlated with ΔT at large scales. At scales ≲103 km, examined taxa, except carnivorans, show highest richness within the trop-ics. Terrestrial plateaux exhibit high coherence between carnivorans and E at scales ∼103 km, consistent with contribution of large-scale tectonic processes to biodiver-sity. Results are similar across different continents and for global latitudinal averages. Spectral admittance permits derivation of rules-of- thumb relating long-wavelength environmental and species richness trends.Main Conclusions: Sensitivities of mammal, bird and amphibian populations to envi-ronment are highly scale dependent. At large scales, carnivoran richness is largely in-dependent of temperature and precipitation, whereas amphibian richness correlates strongly with precipitation and temperature, and anti-correlates with temperature range. These results pave the way for spectral- based calibration of models that pre-dict biodiversity response to climate change scenarios

    Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: comparison with linear subspace techniques

    Full text link
    Natural convection in porous media is a highly nonlinear multiphysical problem relevant to many engineering applications (e.g., the process of CO2\mathrm{CO_2} sequestration). Here, we present a non-intrusive reduced order model of natural convection in porous media employing deep convolutional autoencoders for the compression and reconstruction and either radial basis function (RBF) interpolation or artificial neural networks (ANNs) for mapping parameters of partial differential equations (PDEs) on the corresponding nonlinear manifolds. To benchmark our approach, we also describe linear compression and reconstruction processes relying on proper orthogonal decomposition (POD) and ANNs. We present comprehensive comparisons among different models through three benchmark problems. The reduced order models, linear and nonlinear approaches, are much faster than the finite element model, obtaining a maximum speed-up of 7×1067 \times 10^{6} because our framework is not bound by the Courant-Friedrichs-Lewy condition; hence, it could deliver quantities of interest at any given time contrary to the finite element model. Our model's accuracy still lies within a mean squared error of 0.07 (two-order of magnitude lower than the maximum value of the finite element results) in the worst-case scenario. We illustrate that, in specific settings, the nonlinear approach outperforms its linear counterpart and vice versa. We hypothesize that a visual comparison between principal component analysis (PCA) or t-Distributed Stochastic Neighbor Embedding (t-SNE) could indicate which method will perform better prior to employing any specific compression strategy

    Multiplexed dispersive readout of superconducting phase qubits

    Full text link
    We introduce a frequency-multiplexed readout scheme for superconducting phase qubits. Using a quantum circuit with four phase qubits, we couple each qubit to a separate lumped-element superconducting readout resonator, with the readout resonators connected in parallel to a single measurement line. The readout resonators and control electronics are designed so that all four qubits can be read out simultaneously using frequency multiplexing on the one measurement line. This technology provides a highly efficient and compact means for reading out multiple qubits, a significant advantage for scaling up to larger numbers of qubits.Comment: 4 pages, 4 figure

    Electron affinity of Li: A state-selective measurement

    Get PDF
    We have investigated the threshold of photodetachment of Li^- leading to the formation of the residual Li atom in the 2p2P2p ^2P state. The excited residual atom was selectively photoionized via an intermediate Rydberg state and the resulting Li^+ ion was detected. A collinear laser-ion beam geometry enabled both high resolution and sensitivity to be attained. We have demonstrated the potential of this state selective photodetachment spectroscopic method by improving the accuracy of Li electron affinity measurements an order of magnitude. From a fit to the Wigner law in the threshold region, we obtained a Li electron affinity of 0.618 049(20) eV.Comment: 5 pages,6 figures,22 reference

    Planar Superconducting Resonators with Internal Quality Factors above One Million

    Full text link
    We describe the fabrication and measurement of microwave coplanar waveguide resonators with internal quality factors above 10 million at high microwave powers and over 1 million at low powers, with the best low power results approaching 2 million, corresponding to ~1 photon in the resonator. These quality factors are achieved by controllably producing very smooth and clean interfaces between the resonators' aluminum metallization and the underlying single crystal sapphire substrate. Additionally, we describe a method for analyzing the resonator microwave response, with which we can directly determine the internal quality factor and frequency of a resonator embedded in an imperfect measurement circuit.Comment: 4 pages, 3 figures, 1 tabl
    • …
    corecore