9 research outputs found

    'Statins in retinal disease'

    Get PDF
    Statins are known for their blood cholesterol-lowering effect and are widely used in patients with cardiovascular and metabolic diseases. Research over the past three decades shows that statins have diverse effects on different pathophysiological pathways involved in angiogenesis, inflammation, apoptosis, and anti-oxidation, leading to new therapeutic options. Recently, statins have attracted considerable attention for their immunomodulatory effect. Since immune reactivity has been implicated in a number of retinal diseases, such as uveitis, age-related macular degeneration (AMD) and diabetic retinopathy, there is now a growing body of evidence supporting the beneficial effects of statins in these retinopathies. This review evaluates the relationship between statins and the pathophysiological basis of these diseases, focusing on their potential role in treatment. A PubMed database search and literature review was conducted. Among AMD patients, there is inconsistent evidence regarding protection against development of early AMD or delaying disease progression; though they have been found to reduce the risk of developing choroidal neovascular membranes (CNV). In patients with retinal vein occlusion, there was no evidence to support a therapeutic benefit or a protective role with statins. In patients with diabetic retinopathy, statins demonstrate a reduction in disease progression and improved resolution of diabetic macular oedema (DMO). Among patients with uveitis, statins have a protective effect by reducing the likelihood of uveitis development

    In vitro and in vivo cardiomyogenic differentiation of amniotic fluid stem cells.

    No full text
    Cell therapy has developed as a complementary treatment for myocardial regeneration. While both autologous and allogeneic uses have been advocated, the ideal candidate has not been identified yet. Amniotic fluid-derived stem (AFS) cells are potentially a promising resource for cell therapy and tissue engineering of myocardial injuries. However, no information is available regarding their use in an allogeneic context. c-kit-sorted, GFP-positive rat AFS (GFP-rAFS) cells and neonatal rat cardiomyocytes (rCMs) were characterized by cytocentrifugation and flow cytometry for the expression of mesenchymal, embryonic and cell lineage-specific antigens. The activation of the myocardial gene program in GFP-rAFS cells was induced by co-culture with rCMs. The stem cell differentiation was evaluated using immunofluorescence, RT-PCR and single cell electrophysiology. The in vivo potential of Endorem-labeled GFP-rAFS cells for myocardial repair was studied by transplantation in the heart of animals with ischemia/reperfusion injury (I/R), monitored by magnetic resonance imaging (MRI). Three weeks after injection a small number of GFP-rAFS cells acquired an endothelial or smooth muscle phenotype and to a lesser extent CMs. Despite the low GFP-rAFS cells count in the heart, there was still an improvement of ejection fraction as measured by MRI. rAFS cells have the in vitro propensity to acquire a cardiomyogenic phenotype and to preserve cardiac function, even if their potential may be limited by poor survival in an allogeneic setting

    Risk of incident atrial fibrillation in patients presenting with retinal artery or vein occlusion: a nationwide cohort study

    Get PDF
    Abstract Background The inter-relationships of atrial fibrillation (AF) to retinal vascular occlusions (whether retinal artery occlusion (RAO) or retinal venous occlusion (RVO)) remain unclear. It is unknown if a presentation of retinal artery or venous occlusions may indicate a new onset cardiac arrhythmia. To shed light on this association, we investigated the risk of new onset AF in patients with known RAO and RVO. Methods Patients with retinal occlusions from 1997 to 2011 were identified through Danish nationwide registries and matched 1:5 according to sex and age. Cumulative incidence and unadjusted rates of AF according to retinal vascular occlusions (i.e. RAO or RVO) were determined. Hazard ratios (HR) of AF according to retinal vascular occlusion were adjusted for hypertension, diabetes, vascular disease and prior stroke/systemic thromboembolism/transient ischemic attack. Results One thousand three hundred sixty-eight cases with retinal vascular occlusions were identified (median age 71.4 (inter quartile range (IQR); 61.2–79.8), 47.3% male). RAO constituted 706 cases (51.6%) and RVO 529 (38.7%). The rate of incident AF amongst all cases with retinal vascular occlusion was 1.74 per 100 person-years (95% confidence interval (CI), 1.47–2.06) compared to 1.22 (95% CI, 1.12–1.33) in the matched control group. The rate of AF in RAO was 2.01 (95% CI, 1.6–2.52) and 1.52 (1.15–2.01) in RVO. HRs of incident AF adjusted for cardiovascular comorbidities were 1.26 (95% CI; 1.04–1.53, p = 0.019) for any retinal vascular occlusion, 1.45 (95% CI; 1.10–1.89, p = 0.015) for RAO, and 1.02 (95% CI; 0.74–1.39, p = 0.920) for RVO. Conclusions A new diagnosis of retinal vascular occlusion in patients without prior AF was associated with increased risk of incident AF, particularly amongst patients with RAO. Awareness of AF in patients with retinal vascular occlusions is advised
    corecore