29 research outputs found

    IRS Scan-mapping of the Wasp-waist Nebula (IRAS 16253–2429). I. Derivation of Shock Conditions from H_2 Emission and Discovery of 11.3 μm PAH Absorption

    Get PDF
    The outflow driven by the Class 0 protostar, IRAS 16253–2429, is associated with bipolar cavities visible in scattered mid-infrared light, which we refer to as the Wasp-Waist Nebula. InfraRed Spectometer (IRS) scan mapping with the Spitzer Space Telescope of a ~1' × 2' area centered on the protostar was carried out. The outflow is imaged in six pure rotational (0-0 S(2) through 0-0 S(7)) H_2 lines, revealing a distinct, S-shaped morphology in all maps. A source map in the 11.3 μm polycyclic aromatic hydrocarbon (PAH) feature is presented in which the protostellar envelope appears in absorption. This is the first detection of absorption in the 11.3 μm PAH feature. Spatially resolved excitation analysis of positions in the blue- and redshifted outflow lobes, with extinction-corrections determined from archival Spitzer 8 μm imaging, shows remarkably constant temperatures of ~1000 K in the shocked gas. The radiated luminosity in the observed H_2 transitions is found to be 1.94 ± 0.05 × 10^(–5) L_⊙ in the redshifted lobe and 1.86 ± 0.04 × 10^(–5) L_⊙ in the blueshifted lobe. These values are comparable to the mechanical luminosity of the flow. By contrast, the mass of hot (T ~ 1000 K) H_2 gas is 7.95 ± 0.19 × 10^(–7) M_⊙ in the redshifted lobe and 5.78 ± 0.17 × 10^(–7) M_⊙ in the blueshifted lobe. This is just a tiny fraction, of order 10^(–3), of the gas in the cold (30 K), swept-up gas mass derived from millimeter CO observations. The H_2 ortho/para ratio of 3:1 found at all mapped points in this flow suggests previous passages of shocks through the gas. Comparison of the H_2 data with detailed shock models of Wilgenbus et al. shows the emitting gas is passing through Jump (J-type) shocks. Pre-shock densities of 10^4 cm^(–3)≤ n _H ≤ 10^5 cm^(–3) are inferred for the redshifted lobe and n _H ≤ 10^3 cm^(–3) for the blueshifted lobe. Shock velocities are 5 km s^(–1) ≤ v_s ≤ 10 km s^(–1) for the redshifted gas and v_s = 10 km s^(–1) for the blueshifted gas. Initial transverse (to the shock) magnetic field strengths for the redshifted lobe are in the range 10-32 μG, and just 3 μG for the blueshifted lobe. A cookbook for using the CUBISM contributed software for IRS spectral mapping data is presented in the Appendix

    The young stellar population of Lynds 1340. An infrared view

    Get PDF
    We present results of an infrared study of the molecular cloud Lynds 1340, forming three groups of low and intermediate-mass stars. Our goals are to identify and characterise the young stellar population of the cloud, study the relationships between the properties of the cloud and the emergent stellar groups, and integrate L1340 into the picture of the star-forming activity of our Galactic environment. We selected candidate young stellar objects from the Spitzer and WISE data bases using various published color criteria, and classified them based on the slope of the spectral energy distribution. We identified 170 Class II, 27 Flat SED, and Class 0/I sources. High angular resolution near-infrared observations of the RNO 7 cluster, embedded in L1340, revealed eight new young stars of near-infrared excess. The surface density distribution of young stellar objects shows three groups, associated with the three major molecular clumps of L1340, each consisting of less than 100 members, including both pre-main sequence stars and embedded protostars. New Herbig--Haro objects were identified in the Spitzer images. Our results demonstrate that L1340 is a prolific star-forming region of our Galactic environment in which several specific properties of the intermediate-mass mode of star formation can be studied in detail.Comment: 73 pages, 33 figures, 15 tables. Accepted for publication in ApJ

    Spitzer Warm Mission Transition and Operations

    Get PDF
    Following the successful dynamic planning and implementation of IRAC Warm Instrument Characterization activities, transition to Spitzer Warm Mission operations has gone smoothly. Operation teams procedures and processes required minimal adaptation and the overall composition of the Mission Operation System retained the same functionality it had during the Cryogenic Mission. While the warm mission scheduling has been simplified because all observations are now being made with a single instrument, several other differences have increased the complexity. The bulk of the observations executed to date have been from ten large Exploration Science programs that, combined, have more complex constraints, more observing requests, and more exo-planet observations with durations of up to 145 hours. Communication with the observatory is also becoming more challenging as the Spitzer DSN antenna allocations have been reduced from two tracking passes per day to a single pass impacting both uplink and downlink activities. While IRAC is now operating with only two channels, the data collection rate is roughly 60% of the four-channel rate leaving a somewhat higher average volume collected between the less frequent passes. Also, the maximum downlink data rate is decreasing as the distance to Spitzer increases requiring longer passes. Nevertheless, with well over 90% of the time spent on science observations, efficiency has equaled or exceeded that achieved during the cryogenic mission

    Protostellar Outflows in L1340

    Get PDF
    We have searched the L1340 A, B, and C clouds for shocks from protostellar outflows using the H_2 2.122 μm near-infrared line as a shock tracer. Substantial outflow activity has been found in each of the three regions of the cloud (L1340 A, L1340 B, and L1340 C). We find 42 distinct shock complexes (16 in L1340 A, 11 in L1340 B, and 15 in L1340 C). We were able to link 17 of those shock complexes into 12 distinct outflows and identify candidate source stars for each. We examine the properties (A_V, T_(bol), and L_(bol)) of the source protostars and compare them to the properties of the general population of Class 0/I and flat spectral energy distribution protostars and find that there is an indication, albeit at low statistical significance, that the outflow-driving protostars are drawn from a population with lower A_V, higher L_(bol), and lower T_(bol) than the general population of protostars

    New Candidate Eruptive Young Stars in Lynds 1340

    Get PDF
    We report on the discovery of three candidate eruptive young stars, found during our comprehensive multi-wavelength study of the young stellar population of the dark cloud L1340. These stars are as follows. (1) IRAS 02224+7227 (2MASS 02270555+7241167, HH 487S) exhibited FUor-like spectrum in our low-resolution optical spectra. The available photometric data restrict its luminosity to 23 L_☉ < L_(bol) < 59 L_☉. (2) 2MASS 02263797+7304575, identified as a classical T Tauri star during our Hα survey, exhibited an EXor-type brightening in 2005 November at the time of the Sloan Digital Sky Survey observations of the region. (3) 2MASS 02325605+7246055, a low-mass embedded young star, associated with a fan-shaped infrared nebula, underwent an outburst between the DSS 1 and DSS 2 surveys, leading to the appearance of a faint optical nebula. Our [S II] and Hα images, as well as the Spitzer Infrared Array Camera 4.5 μm images, revealed Herbig-Haro objects associated with this star. Our results suggest that amplitudes and timescales of outbursts do not necessarily correlate with the evolutionary stage of the stars

    A Mid-Infrared Study of the Class 0 Cluster in LDN 1448

    Get PDF
    We present ground-based mid-infrared observations of Class 0 protostars in LDN 1448. Of the five known protostars in this cloud, we detected two, L1448N:A and L1448C, at 12.5, 17.9, 20.8, and 24.5 microns, and a third, L1448 IRS 2, at 24.5 microns. We present high-resolution images of the detected sources, and photometry or upper limits for all five Class 0 sources in this cloud. With these data, we are able to augment existing spectral energy distributions (SEDs) for all five objects and place them on an evolutionary status diagram.Comment: Accepted by the Astronomical Journal; 26 pages, 9 figure

    Protostellar Outflows in L1340

    Get PDF
    We have searched the L1340 A, B, and C clouds for shocks from protostellar outflows using the H_2 2.122 μm near-infrared line as a shock tracer. Substantial outflow activity has been found in each of the three regions of the cloud (L1340 A, L1340 B, and L1340 C). We find 42 distinct shock complexes (16 in L1340 A, 11 in L1340 B, and 15 in L1340 C). We were able to link 17 of those shock complexes into 12 distinct outflows and identify candidate source stars for each. We examine the properties (A_V, T_(bol), and L_(bol)) of the source protostars and compare them to the properties of the general population of Class 0/I and flat spectral energy distribution protostars and find that there is an indication, albeit at low statistical significance, that the outflow-driving protostars are drawn from a population with lower A_V, higher L_(bol), and lower T_(bol) than the general population of protostars

    Spitzer Space Telescope observatory planning and scheduling team

    Get PDF
    Launched as the space infrared telescope facility (SIRTF) in August, 2003 and renamed in early 2004, the Spitzer space telescope is performing an extended series of science observations at wavelengths ranging from 3 to 180 microns. The California Institute of Technology is the home of the Spitzer Science Center (SSC) and operates the science operations system (SOS), which supports science operations of the observatory. A key function supported by the SOS is the long-range planning and short-term scheduling of the observatory. This paper describes the role and function of the SSC observatory planning and scheduling team (OPST), its operational interfaces, processes, and tools

    Calibration and data quality of warm IRAC

    Get PDF
    We present an overview of the calibration and properties of data from the IRAC instrument aboard the Spitzer Space Telescope taken after the depletion of cryogen. The cryogen depleted on 15 May 2009, and shortly afterward a two-month- long calibration and characterization campaign was conducted. The array temperature and bias setpoints were revised on 19 September 2009 to take advantage of lower than expected power dissipation by the instrument and to improve sensitivity. The final operating temperature of the arrays is 28.7 K, the applied bias across each detector is 500 mV and the equilibrium temperature of the instrument chamber is 27.55 K. The final sensitivities are essentially the same as the cryogenic mission with the 3.6 μm array being slightly less sensitive (10%) and the 4.5 μm array within 5% of the cryogenic sensitivity. The current absolute photometric uncertainties are 4% at 3.6 and 4.5 μm, and better than milli-mag photometry is achievable for long-stare photometric observations. With continued analysis, we expect the absolute calibration to improve to the cryogenic value of 3%. Warm IRAC operations fully support all science that was conducted in the cryogenic mission and all currently planned warm science projects (including Exploration Science programs). We expect that IRAC will continue to make ground-breaking discoveries in star formation, the nature of the early universe, and in our understanding of the properties of exoplanets
    corecore