1,071 research outputs found

    Comparative performance of prediction model, non-expert and telediagnosis of common external and middle ear disease using a patient cohort from Cambodia that included one hundred and thirty-eight ears

    Get PDF
    Efforts to combat the large global burden of ear and hearing disorders are hampered by poor availability of expert diagnosis We report the first study to directly compare prediction model, non-expert and tele-diagnosis of middle and external ear disorders. A prediction model based upon a novel automated otological symptom questionnaire performed poorly, but absence of otorrhoea was found to reliably exclude a diagnosis of chronic suppurative otitis media. Both on-site non-expert and expert tele-diagnosis had high diagnostic specificity, but low sensitivity. Future work could explore how the validity of these diagnostic methods may be improved

    Cmah-dystrophin deficient mdx mice display an accelerated cardiac phenotype that is improved following peptide-PMO exon skipping treatment

    Get PDF
    Duchenne muscular dystrophy (DMD) is caused by loss of dystrophin protein, leading to progressive muscle weakness and premature death due to respiratory and/or cardiac complications. Cardiac involvement is characterized by progressive dilated cardiomyopathy, decreased fractional shortening and metabolic dysfunction involving reduced metabolism of fatty acids—the major cardiac metabolic substrate. Several mouse models have been developed to study molecular and pathological consequences of dystrophin deficiency, but do not recapitulate all aspects of human disease pathology and exhibit a mild cardiac phenotype. Here we demonstrate that Cmah (cytidine monophosphate-sialic acid hydroxylase)-deficient mdx mice (Cmah−/−;mdx) have an accelerated cardiac phenotype compared to the established mdx model. Cmah−/−;mdx mice display earlier functional deterioration, specifically a reduction in right ventricle (RV) ejection fraction and stroke volume (SV) at 12 weeks of age and decreased left ventricle diastolic volume with subsequent reduced SV compared to mdx mice by 24 weeks. They further show earlier elevation of cardiac damage markers for fibrosis (Ctgf), oxidative damage (Nox4) and haemodynamic load (Nppa). Cardiac metabolic substrate requirement was assessed using hyperpolarized magnetic resonance spectroscopy indicating increased in vivo glycolytic flux in Cmah−/−;mdx mice. Early upregulation of mitochondrial genes (Ucp3 and Cpt1) and downregulation of key glycolytic genes (Pdk1, Pdk4, Ppara), also denote disturbed cardiac metabolism and shift towards glucose utilization in Cmah−/−;mdx mice. Moreover, we show long-term treatment with peptide-conjugated exon skipping antisense oligonucleotides (20-week regimen), resulted in 20% cardiac dystrophin protein restoration and significantly improved RV cardiac function. Therefore, Cmah−/−;mdx mice represent an appropriate model for evaluating cardiac benefit of novel DMD therapeutics

    How much dystrophin is enough: the physiological consequences of different levels of dystrophin in the mdx mouse

    Get PDF
    Splice modulation therapy has shown great clinical promise in Duchenne muscular dystrophy, resulting in the production of dystrophin protein. Despite this, the relationship between restoring dystrophin to established dystrophic muscle and its ability to induce clinically relevant changes in muscle function is poorly understood. In order to robustly evaluate functional improvement, we used in situ protocols in the mdx mouse to measure muscle strength and resistance to eccentric contraction-induced damage. Here, we modelled the treatment of muscle with pre-existing dystrophic pathology using antisense oligonucleotides conjugated to a cell-penetrating peptide. We reveal that 15% homogeneous dystrophin expression is sufficient to protect against eccentric contraction-induced injury. In addition, we demonstrate a >40% increase in specific isometric force following repeated administrations. Strikingly, we show that changes in muscle strength are proportional to dystrophin expression levels. These data define the dystrophin restoration levels required to slow down or prevent disease progression and improve overall muscle function once a dystrophic environment has been established in the mdx mouse model

    Nucleotide sequence of the structural gene (pyrB) that encodes the catalytic polypeptide of aspartate transcarbamoylase of Escherichia coli.

    Get PDF
    The deoxyribonucleotide sequence of pyrB, the cistron encoding the catalytic subunit of aspartate transcarbamoylase (carbamoylphosphate: L-aspartate carbamoyltransferase, EC 2.1.3.2), has been determined. The pyrB gene encodes a polypeptide of 311 amino acid residues initiated by an NH2-terminal methionine that is not present in the catalytically active polypeptide. The DNA sequence analysis revealed the presence of an eight-amino-acid sequence beginning at Met-219 that was not detected in previous analyses of amino acid sequence. This octapeptide sequence provides an additional component of the disordered loop in the equatorial domain of the catalytic polypeptide. It had been found previously that the catalytic polypeptide is expressed from a bicistronic operon that also produces the regulatory polypeptide encoded by pyrI. A single transcriptional control region precedes the structural gene of the catalytic polypeptide and a simple 15-base-pair region separates its COOH terminus from the structural gene of the regulatory polypeptide. The chain-terminating codon of the catalytic polypeptide may contribute to the ribosomal binding site for the regulatory polypeptide and thus assist coordinate expression of the two cistrons

    S and D Wave Mixing in High TcT_c Superconductors

    Full text link
    For a tight binding model with nearest neighbour attraction and a small orthorhombic distortion, we find a phase diagram for the gap at zero temperature which includes three distinct regions as a function of filling. In the first, the gap is a mixture of mainly dd-wave with a smaller extended ss-wave part. This is followed by a region in which there is a rapid increase in the ss-wave part accompanied by a rapid increase in relative phase between ss and dd from 0 to π\pi. Finally, there is a region of dominant ss with a mixture of dd and zero phase. In the mixed region with a finite phase, the ss-wave part of the gap can show a sudden increase with decreasing temperature accompanied with a rapid increase in phase which shows many of the characteristics measured in the angular resolved photoemission experiments of Ma {\em et al.} in Bi2Sr2CaCu2O8\rm Bi_2Sr_2CaCu_2O_8Comment: 12 pages, RevTeX 3.0, 3 PostScript figures uuencoded and compresse

    Cis-effects on gene expression in the human prenatal brain associated with genetic risk for neuropsychiatric disorders

    Get PDF
    The majority of common risk alleles identified for neuropsychiatric disorders reside in non-coding regions of the genome and are therefore likely to impact gene regulation. However, the genes that are primarily affected and the nature and developmental timing of these effects remain unclear. Given the hypothesised role for early neurodevelopmental processes in these conditions, we here define genetic predictors of gene expression in the human fetal brain with which we perform transcriptome-wide association studies (TWASs) of attention deficit hyperactivity disorder (ADHD), autism spectrum disorder, bipolar disorder, major depressive disorder and schizophrenia. We identify prenatal cis-regulatory effects on 63 genes and 166 individual transcripts associated with genetic risk for these conditions. We observe pleiotropic effects of expression predictors for a number of genes and transcripts, including those of decreased DDHD2 expression in association with risk for schizophrenia and bipolar disorder, increased expression of a ST3GAL3 transcript with risk for schizophrenia and ADHD, and increased expression of an XPNPEP3 transcript with risk for schizophrenia, bipolar disorder and major depression. For the protocadherin alpha cluster genes PCDHA7 and PCDHA8, we find that predictors of low expression are associated with risk for major depressive disorder while those of higher expression are associated with risk for schizophrenia. Our findings support a role for altered gene regulation in the prenatal brain in susceptibility to various neuropsychiatric disorders and prioritize potential risk genes for further neurobiological investigation

    A Mendelian randomization study of the causal association between anxiety phenotypes and schizophrenia

    Get PDF
    Schizophrenia shows a genetic correlation with both anxiety disorder and neuroticism, a trait strongly associated with anxiety. However, genetic correlations do not discern causality from genetic confounding. We therefore aimed to investigate whether anxiety-related phenotypes lie on the causal pathway to schizophrenia using Mendelian randomization (MR). Four MR methods, each with different assumptions regarding instrument validity, were used to investigate casual associations of anxiety and neuroticism related phenotypes on schizophrenia, and vice versa: inverse variance weighted (IVW), weighted median, weighted mode, and, when appropriate, MR Egger regression. MR provided evidence of a causal effect of neuroticism on schizophrenia (IVW odds ratio [OR]: 1.33, 95% confidence interval [CI]: 1.12-1.59), but only weak evidence of a causal effect of anxiety on schizophrenia (IVW OR: 1.10, 95% CI: 1.01-1.19). There was also evidence of a causal association from schizophrenia liability to anxiety disorder (IVW OR: 1.28, 95% CI: 1.18-1.39) and worry (IVW beta: 0.05, 95% CI: 0.03-0.07), but effect estimates from schizophrenia to neuroticism were inconsistent in the main analysis. The evidence of neuroticism increasing schizophrenia risk provided by our results supports future efforts to evaluate neuroticism- or anxiety-based therapies to prevent onset of psychotic disorders

    Cognitive performance among carriers of pathogenic copy number variants: analysis of 152,000 UK Biobank subjects

    Get PDF
    Background The UK Biobank is a unique resource for biomedical research, with extensive phenotypic and genetic data on half a million adults from the general population. We aimed to examine the effect of neurodevelopmental copy number variants (CNVs) on the cognitive performance of participants. Methods We used Affymetrix Power Tools and PennCNV-Affy software to analyze Affymetrix microarrays of the first 152,728 genotyped individuals. We annotated a list of 93 CNVs and compared their frequencies with control datasets. We analyzed the performance on seven cognitive tests of carriers of 12 CNVs associated with schizophrenia (n = 1087) and of carriers of another 41 neurodevelopmental CNVs (n = 484). Results The frequencies of the 93 CNVs in the Biobank subjects were remarkably similar to those among 26,628 control subjects from other datasets. Carriers of schizophrenia-associated CNVs and of the group of 41 other neurodevelopmental CNVs had impaired performance on the cognitive tests, with nine of 14 comparisons remaining statistically significant after correction for multiple testing. They also had lower educational and occupational attainment (p values between 10−7 and 10−18). The deficits in cognitive performance were modest (Z score reductions between 0.01 and 0.51), compared with individuals with schizophrenia in the Biobank (Z score reductions between 0.35 and 0.90). Conclusions This is the largest study on the cognitive phenotypes of CNVs to date. Adult carriers of neurodevelopmental CNVs from the general population have significant cognitive deficits. The UK Biobank will allow unprecedented opportunities for analysis of further phenotypic consequences of CNVs
    • …
    corecore