665 research outputs found
Neural correlates of mentalizing-related computations during strategic interactions in humans
Competing successfully against an intelligent adversary requires the ability to mentalize an opponent's state of mind to anticipate his/her future behavior. Although much is known about what brain regions are activated during mentalizing, the question of how this function is implemented has received little attention to date. Here we formulated a computational model describing the capacity to mentalize in games. We scanned human subjects with functional MRI while they participated in a simple two-player strategy game and correlated our model against the functional MRI data. Different model components captured activity in distinct parts of the mentalizing network. While medial prefrontal cortex tracked an individual's expectations given the degree of model-predicted influence, posterior superior temporal sulcus was found to correspond to an influence update signal, capturing the difference between expected and actual influence exerted. These results suggest dissociable contributions of different parts of the mentalizing network to the computations underlying higher-order strategizing in humans
Decoding the neural substrates of reward-related decision making with functional MRI
Although previous studies have implicated a diverse set of brain regions in reward-related decision making, it is not yet known which of these regions contain information that directly reflects a decision. Here, we measured brain activity using functional MRI in a group of subjects while they performed a simple reward-based decision-making task: probabilistic reversal-learning. We recorded brain activity from nine distinct regions of interest previously implicated in decision making and separated out local spatially distributed signals in each region from global differences in signal. Using a multivariate analysis approach, we determined the extent to which global and local signals could be used to decode subjects' subsequent behavioral choice, based on their brain activity on the preceding trial. We found that subjects' decisions could be decoded to a high level of accuracy on the basis of both local and global signals even before they were required to make a choice, and even before they knew which physical action would be required. Furthermore, the combined signals from three specific brain areas (anterior cingulate cortex, medial prefrontal cortex, and ventral striatum) were found to provide all of the information sufficient to decode subjects' decisions out of all of the regions we studied. These findings implicate a specific network of regions in encoding information relevant to subsequent behavioral choice
Studies on growth rates in pigs and the effect of birth weight
End of project reportThe purpose of this study was to assess some environmental and management factors that affect growth performance on commercial pig units. In experiment 1, a survey was carried out on 22 pig units of known growth performance in south-west Ireland to compare management factors between those showing poor and good growth rates. Low growth rate appears to be due to the cumulative effect of a combination of factors. Experiment 2 was conducted to determine the effects of providing an
additional feeder on performance of weaned piglets. No benefits were
recorded. Feed consumed from the additional feeder was a replacement for
feed that otherwise would have been consumed from the control hopper
feeder.
Experiment 3 was designed to determine if pig performance and efficiency of
growth were affected by weight at birth and at weaning. Lightweight pigs
showed inferior growth performance up to the finisher period. Although they
compensated some of the inferior growth towards the time of slaughter, they
never reached the weights of the heavy birth-weight animals. Males were
either significantly heavier or tended to be heavier than females throughout.
There was no significant difference between the sexes in the number of days
to slaughter. Light and heavy pigs did not differ in the levels of IGF-1 in their
blood plasma; however lightweight pigs had significantly lower IgG preweaning.
Experiment 4 aimed to determine whether piglet birth weight influenced
growth performance, plasma IGF-1 concentrations and muscle fibre
characteristics at day 42 of life. At slaughter (Day 42) light birth weight pigs
were significantly (P < 0.001) lighter. Plasma IGF-1 concentration was lower
by 28% (P=0.06) in light pigs. Muscle fibre cross sectional area and total fibre
number were not significantly different between groups. This study should be
repeated with bigger numbers
Neural computations underlying action-based decision making in the human brain
Action-based decision making involves choices between different physical actions to obtain rewards. To make such decisions the brain needs to assign a value to each action and then compare them to make a choice. Using fMRI in human subjects, we found evidence for action-value signals in supplementary motor cortex. Separate brain regions, most prominently ventromedial prefrontal cortex, were involved in encoding the expected value of the action that was ultimately taken. These findings differentiate two main forms of value signals in the human brain: those relating to the value of each available action, likely reflecting signals that are a precursor of choice, and those corresponding to the expected value of the action that is subsequently chosen, and therefore reflecting the consequence of the decision process. Furthermore, we also found signals in the dorsomedial frontal cortex that resemble the output of a decision comparator, which implicates this region in the computation of the decision itself
A 15 year record of high-frequency, in situ measurements of hydrogen at Mace Head, Ireland
Continuous high-frequency measurements of atmospheric molecular hydrogen have been made at Mace Head atmospheric research station on the west coast of Ireland from March 1994 to December 2008. The presented data provides information on long term trends and seasonal cycles of hydrogen in background northern hemispheric air. Individual measurements have been sorted using a Lagrangian dispersion model to separate clean background air from regionally polluted European air masses and those transported from southerly latitudes. No significant trend was observed in background northern hemispheric air over the 15 year record, elevations in yearly means were accounted for from large scale biomass burning events. Seasonal cycles show the expected pattern with maxima in spring and minima in late autumn. The mean hydrogen mole fraction in baseline northern hemispheric air was found to be 500.1 ppb. Air transported from southerly latitudes showed an elevation from baseline mean of 11.0 ppb, reflecting both the latitudinal gradient of hydrogen, with higher concentrations in the Southern Hemisphere, and the photochemical source of hydrogen from low northern latitudes. European polluted air masses arriving at Mace Head showed mean elevation of 5.3 ppb from baseline air masses, reflecting hydrogen's source from primary emissions like fossil fuel combustion. Forward modelling of transport of hydrogen to Mace Head suggests that the ratio of hydrogen to carbon monoxide in primary emissions is considerably less in non-traffic sources than traffic sources
A five year record of high-frequency in situ measurements of non-methane hydrocarbons at Mace Head, Ireland
Continuous high-frequency in situ measurements of a range of non-methane hydrocarbons have been made at Mace Head since January 2005. Mace Head is a background Northern Hemispheric site situated on the eastern edge of the Atlantic. Five year measurements (2005–2009) of six C<sub>2</sub>–C<sub>5</sub> non-methane hydrocarbons have been separated into baseline Northern Hemispheric and European polluted air masses, among other sectors. Seasonal cycles in baseline Northern Hemispheric air masses and European polluted air masses arriving at Mace Head have been studied. Baseline air masses show a broad summer minima between June and September for shorter lived species, longer lived species show summer minima in July/August. All species displayed a winter maxima in February. European air masses showed baseline elevated mole fractions for all non-methane hydrocarbons. Largest elevations (of up to 360 ppt for ethane maxima) from baseline data were observed in winter maxima, with smaller elevations observed during the summer. Analysis of temporal trends using the Mann-Kendall test showed small (<6 % yr<sup>&minus;1</sup>) but statistically significant decreases in the butanes and <i>i</i>-pentane between 2005 and 2009 in European air. No significant trends were found for any species in baseline air
Characterization of uncertainties in atmospheric trace gas inversions using hierarchical Bayesian methods
We present a hierarchical Bayesian method for atmospheric trace gas
inversions. This method is used to estimate emissions of trace gases as well
as "hyper-parameters" that characterize the probability density functions
(PDFs) of the a priori emissions and model-measurement covariances. By
exploring the space of "uncertainties in uncertainties", we show that the
hierarchical method results in a more complete estimation of emissions and
their uncertainties than traditional Bayesian inversions, which rely heavily
on expert judgment. We present an analysis that shows the effect of
including hyper-parameters, which are themselves informed by the data, and
show that this method can serve to reduce the effect of errors in assumptions
made about the a priori emissions and model-measurement uncertainties. We
then apply this method to the estimation of sulfur hexafluoride (SF6)
emissions over 2012 for the regions surrounding four Advanced Global
Atmospheric Gases Experiment (AGAGE) stations. We find that improper
accounting of model representation uncertainties, in particular, can lead to
the derivation of emissions and associated uncertainties that are unrealistic
and show that those derived using the hierarchical method are likely to be
more representative of the true uncertainties in the system. We demonstrate
through this SF6 case study that this method is less sensitive to
outliers in the data and to subjective assumptions about a priori emissions
and model-measurement uncertainties than traditional methods
Service evaluation of diabetes management during pregnancy in a regional maternity hospital: Potential scope for increased self-management and remote patient monitoring through mHealth solutions
© 2019 The Author(s). Background: Pre-gestational and gestational diabetes mellitus are common complications in pregnancy affecting one in six pregnancies. The maternity services are under significant strain managing the increasing number of complex pregnancies. This has an impact on patients' experience of antenatal care. Therefore, there is a clear need to address pregnancy care. One possible solution is to use home-based digital technology to reduce clinic visits and improve clinical monitoring. Methods: The aim of this study was to evaluate the antenatal services provided to pregnant women with diabetes who were monitored at the joint metabolic and obstetric clinic at the Southern Health and Social Care Trust in Northern Ireland. Results: The questionnaires were completed by sixty-three women, most of whom had gestational diabetes mellitus. Most of the participants were between 25 and 35 years of age (69.8%), had one or more children (65.1%) and spent over 2 h attending the clinics (63.9%); 78% of women indicated that their travel time to and from the clinic appointment was over 15 min. Over 70% of women used smartphones for health-related purposes. However, only 8.8% used smartphones to manage their health or diabetes. Less than 25% of the women surveyed expressed concerns about using digital technology from home to monitor various aspects of their health in pregnancy. Conclusions: Overall, pregnant women who had or developed diabetes in pregnancy experience frequent hospital visits and long waiting times in the maternity clinics. Most of these pregnant women are willing to self-manage their condition from home and to be monitored remotely by the healthcare staff
Motor Preparatory Activity in Posterior Parietal Cortex is Modulated by Subjective Absolute Value
For optimal response selection, the consequences associated with behavioral success or failure must be appraised. To determine how monetary consequences influence the neural representations of motor preparation, human brain activity was scanned with fMRI while subjects performed a complex spatial visuomotor task. At the beginning of each trial, reward context cues indicated the potential gain and loss imposed for correct or incorrect trial completion. FMRI-activity in canonical reward structures reflected the expected value related to the context. In contrast, motor preparatory activity in posterior parietal and premotor cortex peaked in high “absolute value” (high gain or loss) conditions: being highest for large gains in subjects who believed they performed well while being highest for large losses in those who believed they performed poorly. These results suggest that the neural activity preceding goal-directed actions incorporates the absolute value of that action, predicated upon subjective, rather than objective, estimates of one's performance
Positron Emission Tomography Score Has Greater Prognostic Significance Than Pretreatment Risk Stratification in Early-Stage Hodgkin Lymphoma in the UK RAPID Study.
PURPOSE: Accurate stratification of patients is an important goal in Hodgkin lymphoma (HL), but the role of pretreatment clinical risk stratification in the context of positron emission tomography (PET) -adapted treatment is unclear. We performed a subsidiary analysis of the RAPID trial to assess the prognostic value of pretreatment risk factors and PET score in determining outcomes. PATIENTS AND METHODS: Patients with stage IA to IIA HL and no mediastinal bulk underwent PET assessment after three cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine; 143 PET-positive patients (PET score, 3 to 5) received a fourth doxorubicin, bleomycin, vinblastine, and dacarbazine cycle and involved-field radiotherapy, and 419 patients in complete metabolic remission were randomly assigned to receive involved-field radiotherapy (n = 208) or no additional treatment (n = 211). Cox regression was used to investigate the association between PET score and pretreatment risk factors with HL-specific event-free survival (EFS). RESULTS: High PET score was associated with inferior EFS, before (P .4). CONCLUSION: In RAPID, a positive PET scan did not carry uniform prognostic weight; only a PET score of 5 was associated with inferior outcomes. This suggests that in future trials involving patients without B symptoms or mediastinal bulk, a score of 5 rather than a positive PET result should be used to guide treatment escalation in early-stage HL
- …