36 research outputs found

    The Functional Anatomy and Innervation of the Platysma is Segmental:Implications for Lower Lip Dysfunction, Recurrent Platysmal Bands, and Surgical Rejuvenation

    Get PDF
    BACKGROUND: Despite the central role of the platysma in face and neck rejuvenation, much confusion exists regarding its surgical anatomy.OBJECTIVES: This study was undertaken to clarify the regional anatomy of the platysma and its innervation pattern and to explain clinical phenomena, such as the origin of platysmal bands and their recurrence, and the etiology of lower lip dysfunction after neck lift procedures.METHODS: Fifty-five cadaver heads were studied (16 embalmed, 39 fresh, mean age 75 years). Following preliminary dissections and macro-sectioning, a series of standardized layered dissections were performed, complemented by histology and sheet plastination.RESULTS: In addition to its origin and insertion, the platysma is attached to the skin and deep fascia across its entire superficial and deep surfaces. This composite system explains the age-related formation of static platysmal bands, recurrent platysma bands after complete platysma transection, and recurrent anterior neck laxity after no-release lifting. The facial part of the platysma is primarily innervated by the marginal mandibular branch of the facial nerve, while the submandibular platysma is innervated by the "first" cervical branches which terminate at the mandibular origin of the depressor labii inferioris. This pattern has implications for post-operative dysfunction of the lower lip, including pseudo-paralysis, and potential targeted surgical denervation.CONCLUSIONS: This anatomical study, using layered dissections, large histology, and sheet-plastination, fully describes the anatomy of the platysma including its bony, fascial, and dermal attachments, as well as its segmental innervation including its nerve danger zones. It provides a sound anatomical basis for the further development of surgical techniques to rejuvenate the neck with prevention of recurrent platysmal banding.</p

    The Functional Anatomy and Innervation of the Platysma is Segmental:Implications for Lower Lip Dysfunction, Recurrent Platysmal Bands, and Surgical Rejuvenation

    Get PDF
    BACKGROUND: Despite the central role of the platysma in face and neck rejuvenation, much confusion exists regarding its surgical anatomy.OBJECTIVES: This study was undertaken to clarify the regional anatomy of the platysma and its innervation pattern and to explain clinical phenomena, such as the origin of platysmal bands and their recurrence, and the etiology of lower lip dysfunction after neck lift procedures.METHODS: Fifty-five cadaver heads were studied (16 embalmed, 39 fresh, mean age 75 years). Following preliminary dissections and macro-sectioning, a series of standardized layered dissections were performed, complemented by histology and sheet plastination.RESULTS: In addition to its origin and insertion, the platysma is attached to the skin and deep fascia across its entire superficial and deep surfaces. This composite system explains the age-related formation of static platysmal bands, recurrent platysma bands after complete platysma transection, and recurrent anterior neck laxity after no-release lifting. The facial part of the platysma is primarily innervated by the marginal mandibular branch of the facial nerve, while the submandibular platysma is innervated by the "first" cervical branches which terminate at the mandibular origin of the depressor labii inferioris. This pattern has implications for post-operative dysfunction of the lower lip, including pseudo-paralysis, and potential targeted surgical denervation.CONCLUSIONS: This anatomical study, using layered dissections, large histology, and sheet-plastination, fully describes the anatomy of the platysma including its bony, fascial, and dermal attachments, as well as its segmental innervation including its nerve danger zones. It provides a sound anatomical basis for the further development of surgical techniques to rejuvenate the neck with prevention of recurrent platysmal banding.</p

    The Functional Anatomy and Innervation of the Platysma is Segmental:Implications for Lower Lip Dysfunction, Recurrent Platysmal Bands, and Surgical Rejuvenation

    Get PDF
    BACKGROUND: Despite the central role of the platysma in face and neck rejuvenation, much confusion exists regarding its surgical anatomy.OBJECTIVES: This study was undertaken to clarify the regional anatomy of the platysma and its innervation pattern and to explain clinical phenomena, such as the origin of platysmal bands and their recurrence, and the etiology of lower lip dysfunction after neck lift procedures.METHODS: Fifty-five cadaver heads were studied (16 embalmed, 39 fresh, mean age 75 years). Following preliminary dissections and macro-sectioning, a series of standardized layered dissections were performed, complemented by histology and sheet plastination.RESULTS: In addition to its origin and insertion, the platysma is attached to the skin and deep fascia across its entire superficial and deep surfaces. This composite system explains the age-related formation of static platysmal bands, recurrent platysma bands after complete platysma transection, and recurrent anterior neck laxity after no-release lifting. The facial part of the platysma is primarily innervated by the marginal mandibular branch of the facial nerve, while the submandibular platysma is innervated by the "first" cervical branches which terminate at the mandibular origin of the depressor labii inferioris. This pattern has implications for post-operative dysfunction of the lower lip, including pseudo-paralysis, and potential targeted surgical denervation.CONCLUSIONS: This anatomical study, using layered dissections, large histology, and sheet-plastination, fully describes the anatomy of the platysma including its bony, fascial, and dermal attachments, as well as its segmental innervation including its nerve danger zones. It provides a sound anatomical basis for the further development of surgical techniques to rejuvenate the neck with prevention of recurrent platysmal banding.</p

    The Functional Anatomy and Innervation of the Platysma is Segmental:Implications for Lower Lip Dysfunction, Recurrent Platysmal Bands, and Surgical Rejuvenation

    Get PDF
    BACKGROUND: Despite the central role of the platysma in face and neck rejuvenation, much confusion exists regarding its surgical anatomy.OBJECTIVES: This study was undertaken to clarify the regional anatomy of the platysma and its innervation pattern and to explain clinical phenomena, such as the origin of platysmal bands and their recurrence, and the etiology of lower lip dysfunction after neck lift procedures.METHODS: Fifty-five cadaver heads were studied (16 embalmed, 39 fresh, mean age 75 years). Following preliminary dissections and macro-sectioning, a series of standardized layered dissections were performed, complemented by histology and sheet plastination.RESULTS: In addition to its origin and insertion, the platysma is attached to the skin and deep fascia across its entire superficial and deep surfaces. This composite system explains the age-related formation of static platysmal bands, recurrent platysma bands after complete platysma transection, and recurrent anterior neck laxity after no-release lifting. The facial part of the platysma is primarily innervated by the marginal mandibular branch of the facial nerve, while the submandibular platysma is innervated by the "first" cervical branches which terminate at the mandibular origin of the depressor labii inferioris. This pattern has implications for post-operative dysfunction of the lower lip, including pseudo-paralysis, and potential targeted surgical denervation.CONCLUSIONS: This anatomical study, using layered dissections, large histology, and sheet-plastination, fully describes the anatomy of the platysma including its bony, fascial, and dermal attachments, as well as its segmental innervation including its nerve danger zones. It provides a sound anatomical basis for the further development of surgical techniques to rejuvenate the neck with prevention of recurrent platysmal banding.</p

    The Functional Anatomy and Innervation of the Platysma is Segmental:Implications for Lower Lip Dysfunction, Recurrent Platysmal Bands, and Surgical Rejuvenation

    Get PDF
    BACKGROUND: Despite the central role of the platysma in face and neck rejuvenation, much confusion exists regarding its surgical anatomy.OBJECTIVES: This study was undertaken to clarify the regional anatomy of the platysma and its innervation pattern and to explain clinical phenomena, such as the origin of platysmal bands and their recurrence, and the etiology of lower lip dysfunction after neck lift procedures.METHODS: Fifty-five cadaver heads were studied (16 embalmed, 39 fresh, mean age 75 years). Following preliminary dissections and macro-sectioning, a series of standardized layered dissections were performed, complemented by histology and sheet plastination.RESULTS: In addition to its origin and insertion, the platysma is attached to the skin and deep fascia across its entire superficial and deep surfaces. This composite system explains the age-related formation of static platysmal bands, recurrent platysma bands after complete platysma transection, and recurrent anterior neck laxity after no-release lifting. The facial part of the platysma is primarily innervated by the marginal mandibular branch of the facial nerve, while the submandibular platysma is innervated by the "first" cervical branches which terminate at the mandibular origin of the depressor labii inferioris. This pattern has implications for post-operative dysfunction of the lower lip, including pseudo-paralysis, and potential targeted surgical denervation.CONCLUSIONS: This anatomical study, using layered dissections, large histology, and sheet-plastination, fully describes the anatomy of the platysma including its bony, fascial, and dermal attachments, as well as its segmental innervation including its nerve danger zones. It provides a sound anatomical basis for the further development of surgical techniques to rejuvenate the neck with prevention of recurrent platysmal banding.</p

    The Functional Anatomy and Innervation of the Platysma is Segmental:Implications for Lower Lip Dysfunction, Recurrent Platysmal Bands, and Surgical Rejuvenation

    Get PDF
    BACKGROUND: Despite the central role of the platysma in face and neck rejuvenation, much confusion exists regarding its surgical anatomy.OBJECTIVES: This study was undertaken to clarify the regional anatomy of the platysma and its innervation pattern and to explain clinical phenomena, such as the origin of platysmal bands and their recurrence, and the etiology of lower lip dysfunction after neck lift procedures.METHODS: Fifty-five cadaver heads were studied (16 embalmed, 39 fresh, mean age 75 years). Following preliminary dissections and macro-sectioning, a series of standardized layered dissections were performed, complemented by histology and sheet plastination.RESULTS: In addition to its origin and insertion, the platysma is attached to the skin and deep fascia across its entire superficial and deep surfaces. This composite system explains the age-related formation of static platysmal bands, recurrent platysma bands after complete platysma transection, and recurrent anterior neck laxity after no-release lifting. The facial part of the platysma is primarily innervated by the marginal mandibular branch of the facial nerve, while the submandibular platysma is innervated by the "first" cervical branches which terminate at the mandibular origin of the depressor labii inferioris. This pattern has implications for post-operative dysfunction of the lower lip, including pseudo-paralysis, and potential targeted surgical denervation.CONCLUSIONS: This anatomical study, using layered dissections, large histology, and sheet-plastination, fully describes the anatomy of the platysma including its bony, fascial, and dermal attachments, as well as its segmental innervation including its nerve danger zones. It provides a sound anatomical basis for the further development of surgical techniques to rejuvenate the neck with prevention of recurrent platysmal banding.</p

    A semiquantitative metric for evaluating clinical actionability of incidental or secondary findings from genome-scale sequencing

    Get PDF
    As genome-scale sequencing is increasingly applied in clinical scenarios, a wide variety of genomic findings will be discovered as secondary or incidental findings, and there is debate about how they should be handled. The clinical actionability of such findings varies, necessitating standardized frameworks for a priori decision making about their analysis

    Evaluating the Clinical Validity of Gene-Disease Associations: An Evidence-Based Framework Developed by the Clinical Genome Resource

    Get PDF
    Supplemental Data Supplemental Data include 65 figures and can be found with this article online at http://dx.doi.org/10.1016/j.ajhg.2017.04.015. Supplemental Data Document S1. Figures S1–S65 Download Document S2. Article plus Supplemental Data Download Web Resources ClinGen, https://www.clinicalgenome.org/ ClinGen Gene Curation, https://www.clinicalgenome.org/working-groups/gene-curation/ ClinGen Gene Curation SOP, https://www.clinicalgenome.org/working-groups/gene-curation/projects-initiatives/gene-disease-clinical-validity-sop/ ClinGen Knowledge Base, https://search.clinicalgenome.org/kb/agents/sign_up OMIM, http://www.omim.org/ Orphanet, http://www.orpha.net/consor/cgi-bin/index.php With advances in genomic sequencing technology, the number of reported gene-disease relationships has rapidly expanded. However, the evidence supporting these claims varies widely, confounding accurate evaluation of genomic variation in a clinical setting. Despite the critical need to differentiate clinically valid relationships from less well-substantiated relationships, standard guidelines for such evaluation do not currently exist. The NIH-funded Clinical Genome Resource (ClinGen) has developed a framework to define and evaluate the clinical validity of gene-disease pairs across a variety of Mendelian disorders. In this manuscript we describe a proposed framework to evaluate relevant genetic and experimental evidence supporting or contradicting a gene-disease relationship and the subsequent validation of this framework using a set of representative gene-disease pairs. The framework provides a semiquantitative measurement for the strength of evidence of a gene-disease relationship that correlates to a qualitative classification: “Definitive,” “Strong,” “Moderate,” “Limited,” “No Reported Evidence,” or “Conflicting Evidence.” Within the ClinGen structure, classifications derived with this framework are reviewed and confirmed or adjusted based on clinical expertise of appropriate disease experts. Detailed guidance for utilizing this framework and access to the curation interface is available on our website. This evidence-based, systematic method to assess the strength of gene-disease relationships will facilitate more knowledgeable utilization of genomic variants in clinical and research settings
    corecore