2 research outputs found
Galaxy Disks
The formation and evolution of galactic disks is particularly important for
understanding how galaxies form and evolve, and the cause of the variety in
which they appear to us. Ongoing large surveys, made possible by new
instrumentation at wavelengths from the ultraviolet (GALEX), via optical (HST
and large groundbased telescopes) and infrared (Spitzer) to the radio are
providing much new information about disk galaxies over a wide range of
redshift. Although progress has been made, the dynamics and structure of
stellar disks, including their truncations, are still not well understood. We
do now have plausible estimates of disk mass-to-light ratios, and estimates of
Toomre's parameter show that they are just locally stable. Disks are mostly
very flat and sometimes very thin, and have a range in surface brightness from
canonical disks with a central surface brightness of about 21.5 -mag
arcsec down to very low surface brightnesses. It appears that galaxy
disks are not maximal, except possibly in the largest systems. Their HI layers
display warps whenever HI can be detected beyond the stellar disk, with
low-level star formation going on out to large radii. Stellar disks display
abundance gradients which flatten at larger radii and sometimes even reverse.
The existence of a well-defined baryonic Tully-Fisher relation hints at an
approximately uniform baryonic to dark matter ratio. Thick disks are common in
disk galaxies and their existence appears unrelated to the presence of a bulge
component; they are old, but their formation is not yet understood. Disk
formation was already advanced at redshifts of , but at that epoch
disks were not yet quiescent and in full rotational equilibrium. Downsizing is
now well-established. The formation and history of star formation in S0s is
still not fully understood.Comment: This review has been submitted for Annual Reviews of Astronomy &
Astrophysics, vol. 49 (2011); the final printed version will have fewer
figures and a somewhat shortened text. A pdf-version of this preprint with
high-resolution figures is available from
http://www.astro.rug.nl/~vdkruit/jea3/homepage/disks-ph.pdf. (table of
contents added; 71 pages, 24 figures, 529 references
Far-Ultraviolet Radiation from Elliptical Galaxies
Far-ultraviolet radiation is a ubiquitous, if unanticipated, phenomenon in
elliptical galaxies and early-type spiral bulges. It is the most variable
photometric feature associated with old stellar populations. Recent
observational and theoretical evidence shows that it is produced mainly by
low-mass, small-envelope, helium-burning stars in extreme horizontal branch and
subsequent phases of evolution. These are probably descendents of the dominant,
metal rich population of the galaxies. Their lifetime UV outputs are remarkably
sensitive to their physical properties and hence to the age and the helium and
metal abundances of their parents. UV spectra are therefore exceptionally
promising diagnostics of old stellar populations, although their calibration
requires a much improved understanding of giant branch mass loss, helium
enrichment, and atmospheric diffusion.Comment: 46 pages; includes LaTeX text file, 9 PS figures, 1 JPG figure, 2
style files. Full resolution figures and PS version available at
http://www.astro.virginia.edu/~rwo/araa99/. Article to appear in Annual
Reviews of Astronomy & Astrophysics, 199