605 research outputs found

    Recent Advances in Sulfidated Zerovalent Iron for Contaminant Transformation

    Full text link
    2021 marks 10 years since controlled abiotic synthesis of sulfidated nanoscale zerovalent iron (S-nZVI) for use in site remediation and water treatment emerged as an area of active research. It was then expanded to sulfidated microscale ZVI (S-mZVI) and together with S-nZVI, they are collectively referred to as S-(n)ZVI. Heightened interest in S-(n)ZVI stemmed from its significantly higher reactivity to chlorinated solvents and heavy metals. The extremely promising research outcomes during the initial period (2011-2017) led to renewed interest in (n)ZVI-based technologies for water treatment, with an explosion in new research in the last four years (2018-2021) that is building an understanding of the novel and complex role of iron sulfides in enhancing reactivity of (n)ZVI. Numerous studies have focused on exploring different S-(n)ZVI synthesis approaches, and its colloidal, surface, and reactivity (electrochemistry, contaminant selectivity, and corrosion) properties. This review provides a critical overview of the recent milestones in S-(n)ZVI technology development: (i) clear insights into the role of iron sulfides in contaminant transformation and long-term aging, (ii) impact of sulfidation methods and particle characteristics on reactivity, (iii) broader range of treatable contaminants, (iv) synthesis for complete decontamination, (v) ecotoxicity, and (vi) field implementation. In addition, this review discusses major knowledge gaps and future avenues for research opportunities

    Discrimination of features in natural scenes by a dragonfly neuron

    Get PDF
    Flying insects engage in spectacular high-speed pursuit of targets, requiring visual discrimination of moving objects against cluttered backgrounds. As a first step toward understanding the neural basis for this complex task, we used computational modeling of insect small target motion detector (STMD) neurons to predict responses to features within natural scenes and then compared this with responses recorded from an identified STMD neuron in the dragonfly brain (Hemicordulia tau). A surprising model prediction confirmed by our electrophysiological recordings is that even heavily cluttered scenes contain very few features that excite these neurons, due largely to their exquisite tuning for small features. We also show that very subtle manipulations of the image cause dramatic changes in the response of this neuron, because of the complex inhibitory and facilitatory interactions within the receptive field.Steven D. Wiederman and David C. O'Carrol

    Correlation between OFF and ON channels underlies dark target selectivity in an insect visual system

    Get PDF
    In both vertebrates and invertebrates, evidence supports separation of luminance increments and decrements (ON and OFF channels) in early stages of visual processing (Hartline, 1938; Joesch et al., 2010); however, less is known about how these parallel pathways are recombined to encode form and motion. In Drosophila, genetic knockdown of inputs to putative ON and OFF pathways and direct recording from downstream neurons in the wide-field motion pathway reveal that local elementary motion detectors exist in pairs that separately correlate contrast polarity channels, ON with ON and OFF with OFF (Joesch et al., 2013). However, behavioral responses to reverse-phi motion of discrete features reveal additional correlations of the opposite signs (Clark et al., 2011). We here present intracellular recordings from feature detecting neurons in the dragonfly that provide direct physiological evidence for the correlation of OFF and ON pathways. These neurons show clear polarity selectivity for feature contrast, responding strongly to targets that are darker than the background and only weakly to dark contrasting edges. These dark target responses are much stronger than the linear combination of responses to ON and OFF edges. We compare these data with output from elementary motion detector-based models (Eichner et al., 2011; Clark et al., 2011), with and without stages of strong center-surround antagonism. Our data support an alternative elementary small target motion detector model, which derives dark target selectivity from the correlation of a delayed OFF with an un-delayed ON signal at each individual visual processing unit (Wiederman et al., 2008, 2009).Steven D. Wiederman, Patrick A. Shoemaker and David C. O’Carrol

    Sulfidation enhances stability and mobility of carboxymethyl cellulose stabilized nanoscale zero-valent iron in saturated porous media

    Full text link
    Sulfidation can enhance the reactivity and longevity of nanoscale zero-valent iron (nZVI), but little is known about its effect on the fate and transport of nZVI in saturated porous media. This work compared the stability and mobility of carboxymethyl cellulose (CMC) stabilized nZVI (CMC-nZVI) and sulfidated nZVI (CMC-S-nZVI) particles in saturated porous media. After sulfidation, the hydrodynamic size of CMC-S-nZVI was 100–150 nm larger than CMC-nZVI due to enhanced adsorption of CMC onto the S-nZVI surface, which was facilitated by the bidentate bridging interaction between CMC and the FeSx phase on S-nZVI. Of note is that they had a similar core size and zeta potential. In comparison to CMC-nZVI, CMC-S-nZVI exhibited less physical settling (0–5% vs. 5–73%) and chemical dissolution (2–10% vs. 3–27%) within 55 min under the same ionic conditions (Na+, K+ < 200 mM; Al3+ < 0.75 mM). Column breakthrough experiments showed that both CMC-S-nZVI and CMC-nZVI had relatively high mobility in saturated porous media. However, CMC-S-nZVI exhibited greater breakthrough (C/C0 = 0.57–1.0) and corresponding greater mass recovery rates than the corresponding CMC-nZVI (C/C0 = 0.44–1.0) under most of the experimental conditions (e.g., different ion type and concentration, flow rate, and input concentration). The fitted colloid filtration theory model was in good agreement with experiments. This work suggests that in addition to the significant reactivity and longevity improvements demonstrated in other studies, CMC-S-nZVI is also more mobile than CMC-nZVI suggesting that CMC-S-nZVI has many of the characteristics favorable for field application

    Facilitation of dragonfly target-detecting neurons by slow moving features on continuous paths

    Get PDF
    Extent: 29p.Dragonflies detect and pursue targets such as other insects for feeding and conspecific interaction. They have a class of neurons highly specialized for this task in their lobula, the “small target motion detecting” (STMD) neurons. One such neuron, CSTMD1, reaches maximum response slowly over hundreds of milliseconds of target motion. Recording the intracellular response from CSTMD1 and a second neuron in this system, BSTMD1, we determined that for the neurons to reach maximum response levels, target motion must produce sequential local activation of elementary motion detecting elements. This facilitation effect is most pronounced when targets move at velocities slower than what was previously thought to be optimal. It is completely disrupted if targets are instantaneously displaced a few degrees from their current location. Additionally, we utilize a simple computational model to discount the parsimonious hypothesis that CSTMD1's slow build-up to maximum response is due to it incorporating a sluggish neural delay filter. Whilst the observed facilitation may be too slow to play a role in prey pursuit flights, which are typically rapidly resolved, we hypothesize that it helps maintain elevated sensitivity during prolonged, aerobatically intricate conspecific pursuits. Since the effect seems to be localized, it most likely enhances the relative salience of the most recently “seen” locations during such pursuit flights.James R. Dunbier, Steven D. Wiederman, Patrick A. Shoemaker and David C. O’Carrol
    corecore