28 research outputs found

    Respiratory modulated sympathetic activity:a putative mechanism for developing vascular resistance?

    Get PDF
    Sympathetic activity exhibits respiratory modulation that is amplified in hypertensive rats. Respiratory modulated sympathetic activity produces greater changes in vascular resistance than tonic stimulation of the same stimulus magnitude in normotensive but not hypertensive rats. Mathematical modelling demonstrates that respiratory modulated sympathetic activity may fail to produce greater vascular resistance changes in hypertensive rats because the system is saturated as a consequence of a dysfunctional noradrenaline reuptake mechanism. Respiratory modulated sympathetic activity is an efficient mechanism to raise vascular resistance promptly, corroborating its involvement in the ontogenesis of hypertension

    Utility of a novel biofeedback device for within-breath modulation of heart rate in rats:a quantitative comparison of vagus nerve versus right atrial pacing

    Get PDF
    In an emerging bioelectronics era, there is a clinical need for physiological devices incorporating biofeedback that permits natural and demand-dependent control in real time. Here, we describe a novel device termed a central pattern generator (CPG) that uses cutting edge analogue circuitry producing temporally controlled, electrical stimulus outputs based on the real time integration of physiological feedback. Motivated by the fact that respiratory sinus arrhythmia (RSA), which is the cyclical changes in heart rate every breath, is an essential component of heart rate variability (an indicator of cardiac health), we have explored the versatility and efficiency of the CPG for producing respiratory modulation of heart rate in anaesthetised, spontaneously breathing rats. Diaphragmatic electromyographic activity was used as the input to the device and its output connected to either the right cervical vagus nerve or the right atrium for pacing heart rate. We found that the CPG could induce respiratory related heart rate modulation that closely mimicked RSA. Whether connected to the vagus nerve or right atrium, the versatility of the device was demonstrated by permitting: (i) heart rate modulation in any phase of the respiratory cycle, (ii) control of the magnitude of heart rate modulation and (iii) instant adaptation to changes in respiratory frequency. Vagal nerve pacing was only possible following transection of the nerve limiting its effective use chronically. Pacing via the right atrium permitted better flexibility and control of heart rate above its intrinsic level. This investigation now lays the foundation for future studies using this biofeedback technology permitting closer analysis of both the function and dysfunction of RSA

    Enhancing respiratory sinus arrhythmia increases cardiac output in rats with left ventricular dysfunction

    Get PDF
    Key points: Respiratory sinus arrhythmia is physiological pacing of the heart that disappears in cardiovascular disease and is associated with poor cardiac prognosis. In heart failure, cardiac pacing has little, if any, variation in rate at rest. We proposed that reinstatement of respiratory sinus arrhythmia would improve cardiac function in rats with heart failure. Heart failure rats were paced daily for 2 weeks with either respiratory sinus arrhythmia or paced monotonically at a matched heart rate; cardiac function was measured using non-invasive echocardiography. Cardiac output and stroke volume were increased in rats paced with respiratory sinus arrhythmia compared to monotonic pacing, via improvement in systolic function that persisted beyond the pacing treatment period. We propose that respiratory sinus arrhythmia pacing reverse-remodels the heart in heart failure and is worth considering as a new form of cardiac pacemaking. Abstract: Natural pacing of the heart results in heart rate variability, an indicator of good health and cardiac function. A contributor to heart rate variability is respiratory sinus arrhythmia or RSA – an intrinsic respiratory modulated pacing of heart rate. The loss of RSA is associated with poor cardiac prognosis and sudden cardiac death. We tested if reinstatement of respiratory-modulated heart rate (RMH) would improve cardiac performance in heart failure. Heart failure was induced in Wistar rats by ligation of the left anterior descending coronary artery. Rats were unpaced, monotonically paced and RMH paced; the latter had the same average heart rate as the monotonically paced animals. Cardiac function was assessed non-invasively using echocardiography before and after 2 weeks of daily pacing at a time when pacing was turned off. RMH increased cardiac output by 20 ± 8% compared to monotonic pacing (−3 ± 5%; P &lt; 0.05). This improvement in cardiac output was associated with an increase in stroke volume compared to monotonic pacing (P = 0.03) and improvement in circumferential strain (P = 0.02). Improvements in ejection fraction (P = 0.08) and surrogate measures of left ventricle compliance did not reach significance. Increases in contractility (P &lt; 0.05) and coronary blood flow (P &lt; 0.05) were seen in vitro during variable pacing to mimic RMH. Thus, in rats with left ventricular dysfunction, chronic RMH pacing improved cardiac function through improvements in systolic function. As these improvements were made with pacing switched off, we propose the novel idea that RMH pacing causes reverse-remodelling.</p

    Changes to the Oligosaccharide Profile of Bovine Milk at the Onset of Lactation

    Get PDF
    peer-reviewedNumerous bioactive components exist in human milk including free oligosaccharides, which represent some of the most important, and provide numerous health benefits to the neonate. Considering the demonstrated value of these compounds, much interest lies in characterising structurally similar oligosaccharides in the dairy industry. In this study, the impacts of days post-parturition and parity of the cows on the oligosaccharide and lactose profiles of their milk were evaluated. Colostrum and milk samples were obtained from 18 cows 1–5 days after parturition. Three distinct phases were identified using multivariate analysis: colostrum (day 0), transitional milk (days 1–2) and mature milk (days 3–5). LS-tetrasaccharide c, lacto-N-neotetraose, disialyllacto-N-tetraose, 3’-sial-N-acetyllactosamine, 3’-sialyllactose, lacto-N-neohexaose and disialyllactose were found to be highly affiliated with colostrum. Notably, levels of lactose were at their lowest concentration in the colostrum and substantially increased 1-day post-parturition. The cow’s parity was also shown to have a significant effect on the oligosaccharide profile, with first lactation cows containing more disialyllacto-N-tetraose, 6’-sialyllactose and LS-tetrasaccharide compared to cows in their second or third parity. Overall, this study identifies key changes in oligosaccharide and lactose content that clearly distinguish colostrum from transitional and mature milk and may facilitate the collection of specific streams with divergent biological functions

    Ultra-thin biocompatible implantable chip for bidirectional communication with peripheral nerves

    Get PDF
    To realize optimal recording and stimulation of peripheral nerve cells, a CMOS chip is made with a multitude of electrodes which can be individually addressed in order to select after implantation the 16 best positioned electrodes. Since the Foreign Body Reaction should be minimal for optimum electrode-nerve contact, the CMOS chip is thinned down to 35um and fully packaged resulting in a 75um thin encapsulated chip. The chip is embedded in a biocompatible stack consisting of polymers and inorganic diffusion barriers deposited using atomic layer deposition (ALD). A biocompatible metallization is realized using gold and platinum sandwiched between polymers and ALD layers for flexible interconnects, and iridium oxide (IrOx) is selected as electrode material for optimal charge injection during stimulation. After this dedicated packaging based on the FITEP technology platform (Flexible Implantable Thin Electronic Package), the CMOS chip is still fully functional, which was tested dry (in air) as well as during submersion in saline. The form factor of the packaged chip is optimized for intra-fascicular implantation with minimum tissue damage. First acute in vivo stimulation tests proved that the stimulation capabilities of the IrOx electrodes are very good

    Characterization of Ceftazidime Resistance Mechanisms in Clinical Isolates of Burkholderia pseudomallei from Australia

    Get PDF
    Burkholderia pseudomallei is a Gram-negative bacterium that causes the serious human disease, melioidosis. There is no vaccine against melioidosis and it can be fatal if not treated with a specific antibiotic regimen, which typically includes the third-generation cephalosporin, ceftazidime (CAZ). There have been several resistance mechanisms described for B. pseudomallei, of which the best described are amino acid changes that alter substrate specificity in the highly conserved class A β-lactamase, PenA. In the current study, we sequenced penA from isolates sequentially derived from two melioidosis patients with wild-type (1.5 µg/mL) and, subsequently, resistant (16 or ≥256 µg/mL) CAZ phenotypes. We identified two single-nucleotide polymorphisms (SNPs) that directly increased CAZ hydrolysis. One SNP caused an amino acid substitution (C69Y) near the active site of PenA, whereas a second novel SNP was found within the penA promoter region. In both instances, the CAZ resistance phenotype corresponded directly with the SNP genotype. Interestingly, these SNPs appeared after infection and under selection from CAZ chemotherapy. Through heterologous cloning and expression, and subsequent allelic exchange in the native bacterium, we confirmed the role of penA in generating both low-level and high-level CAZ resistance in these clinical isolates. Similar to previous studies, the amino acid substitution altered substrate specificity to other β-lactams, suggesting a potential fitness cost associated with this mutation, a finding that could be exploited to improve therapeutic outcomes in patients harboring CAZ resistant B. pseudomallei. Our study is the first to functionally characterize CAZ resistance in clinical isolates of B. pseudomallei and to provide proven and clinically relevant signatures for monitoring the development of antibiotic resistance in this important pathogen

    Silicon central pattern generators for cardiac diseases

    Get PDF
    Cardiac rhythm management devices provide therapies for both arrhythmias and resynchronisation but not heart failure, which affects millions of patients worldwide. This paper reviews recent advances in biophysics and mathematical engineering that provide a novel technological platform for addressing heart disease and enabling beat-to-beat adaptation of cardiac pacing in response to physiological feedback. The technology consists of silicon hardware central pattern generators (hCPGs) that may be trained to emulate accurately the dynamical response of biological central pattern generators (bCPGs). We discuss the limitations of present CPGs and appraise the advantages of analog over digital circuits for application in bioelectronic medicine. To test the system, we have focused on the cardio-respiratory oscillators in the medulla oblongata that modulate heart rate in phase with respiration to induce respiratory sinus arrhythmia (RSA). We describe here a novel, scalable hCPG comprising physiologically realistic (Hodgkin–Huxley type) neurones and synapses. Our hCPG comprises two neurones that antagonise each other to provide rhythmic motor drive to the vagus nerve to slow the heart. We show how recent advances in modelling allow the motor output to adapt to physiological feedback such as respiration. In rats, we report on the restoration of RSA using an hCPG that receives diaphragmatic electromyography input and use it to stimulate the vagus nerve at specific time points of the respiratory cycle to slow the heart rate. We have validated the adaptation of stimulation to alterations in respiratory rate. We demonstrate that the hCPG is tuneable in terms of the depth and timing of the RSA relative to respiratory phase. These pioneering studies will now permit an analysis of the physiological role of RSA as well as its any potential therapeutic use in cardiac disease

    Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions

    Get PDF
    While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)—present in some but not all cells—remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.91%) than controls (0.51%, p = 2.68e−4), with recurrent somatic deletions of exons 1–5 of the NRXN1 gene in five SCZ cases. Hi-C maps revealed ectopic, allele-specific loops forming between a potential cryptic promoter and non-coding cis-regulatory elements upon 5′ deletions in NRXN1. We also observed recurrent intragenic deletions of ABCB11, encoding a transporter implicated in anti-psychotic response, in five treatment-resistant SCZ cases and showed that ABCB11 is specifically enriched in neurons forming mesocortical and mesolimbic dopaminergic projections. Our results indicate potential roles of sCNVs in SCZ risk

    Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial

    Get PDF
    Background Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear. Methods RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047. Findings Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths. Interpretation Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population
    corecore