844 research outputs found
Direct dialling of Haar random unitary matrices
Random unitary matrices find a number of applications in quantum information
science, and are central to the recently defined boson sampling algorithm for
photons in linear optics. We describe an operationally simple method to
directly implement Haar random unitary matrices in optical circuits, with no
requirement for prior or explicit matrix calculations. Our physically-motivated
and compact representation directly maps independent probability density
functions for parameters in Haar random unitary matrices, to optical circuit
components. We go on to extend the results to the case of random unitaries for
qubits
Effect of Loss on Multiplexed Single-Photon Sources
An on-demand single-photon source is a key requirement for scaling many
optical quantum technologies. A promising approach to realize an on-demand
single-photon source is to multiplex an array of heralded single-photon sources
using an active optical switching network. However, the performance of
multiplexed sources is degraded by photon loss in the optical components and
the non-unit detection efficiency of the heralding detectors. We provide a
theoretical description of a general multiplexed single-photon source with
lossy components and derive expressions for the output probabilities of
single-photon emission and multi-photon contamination. We apply these
expressions to three specific multiplexing source architectures and consider
their tradeoffs in design and performance. To assess the effect of lossy
components on near- and long-term experimental goals, we simulate the
multiplexed sources when used for many-photon state generation under various
amounts of component loss. We find that with a multiplexed source composed of
switches with ~0.2-0.4 dB loss and high efficiency number-resolving detectors,
a single-photon source capable of efficiently producing 20-40 photon states
with low multi-photon contamination is possible, offering the possibility of
unlocking new classes of experiments and technologies.Comment: Journal versio
Beating the Standard Quantum Limit with Four Entangled Photons
Precision measurements are important across all fields of science. In
particular, optical phase measurements can be used to measure distance,
position, displacement, acceleration and optical path length. Quantum
entanglement enables higher precision than would otherwise be possible. We
demonstrate an optical phase measurement with an entangled four photon
interference visibility greater than the threshold to beat the standard quantum
limit--the limit attainable without entanglement. These results open the way
for new high-precision measurement applications.Comment: 5 pages, 4 figures Author name was slightly modifie
A quantum delayed choice experiment
Quantum systems exhibit particle-like or wave-like behaviour depending on the
experimental apparatus they are confronted by. This wave-particle duality is at
the heart of quantum mechanics, and is fully captured in Wheeler's famous
delayed choice gedanken experiment. In this variant of the double slit
experiment, the observer chooses to test either the particle or wave nature of
a photon after it has passed through the slits. Here we report on a quantum
delayed choice experiment, based on a quantum controlled beam-splitter, in
which both particle and wave behaviours can be investigated simultaneously. The
genuinely quantum nature of the photon's behaviour is tested via a Bell
inequality, which here replaces the delayed choice of the observer. We observe
strong Bell inequality violations, thus showing that no model in which the
photon knows in advance what type of experiment it will be confronted by, hence
behaving either as a particle or as wave, can account for the experimental
data
Continuous variable entanglement on a chip
Encoding quantum information in continuous variables (CV)---as the quadrature
of electromagnetic fields---is a powerful approach to quantum information
science and technology. CV entanglement---light beams in
Einstein-Podolsky-Rosen (EPR) states---is a key resource for quantum
information protocols; and enables hybridisation between CV and single photon
discrete variable (DV) qubit systems. However, CV systems are currently limited
by their implementation in free-space optical networks: increased complexity,
low loss, high-precision alignment and stability, as well as hybridisation,
demand an alternative approach. Here we show an integrated photonic
implementation of the key capabilities for CV quantum technologies---generation
and characterisation of EPR beams in a photonic chip. Combined with integrated
squeezing and non-Gaussian operation, these results open the way to universal
quantum information processing with light
Photonic crystal fibre source of photon pairs for quantum information processing
We demonstrate two key components for optical quantum information processing:
a bright source of heralded single photons; and a bright source of entangled
photon pairs. A pair of pump photons produces a correlated pair of photons at
widely spaced wavelengths (583 nm and 900 nm), via a four-wave
mixing process. We demonstrate a non-classical interference between heralded
photons from independent sources with a visibility of 95%, and an entangled
photon pair source, with a fidelity of 89% with a Bell state.Comment: 4 pages, 3 figure
Quantum-enhanced phase estimation using optical spin squeezing
Quantum metrology enables estimation of optical phase shifts with precision
beyond the shot-noise limit. One way to exceed this limit is to use squeezed
states, where the quantum noise of one observable is reduced at the expense of
increased quantum noise for its complementary partner. Because shot-noise
limits the phase sensitivity of all classical states, reduced noise in the
average value for the observable being measured allows for improved phase
sensitivity. However, additional phase sensitivity can be achieved using phase
estimation strategies that account for the full distribution of measurement
outcomes. Here we experimentally investigate the phase sensitivity of a
five-particle optical spin-squeezed state generated by photon subtraction from
a parametric downconversion photon source. The Fisher information for all
photon-number outcomes shows it is possible to obtain a quantum advantage of
1.58 compared to the shot-noise limit, even though due to experimental
imperfection, the average noise for the relevant spin-observable does not
achieve sub-shot-noise precision. Our demonstration implies improved
performance of spin squeezing for applications to quantum metrology.Comment: 8 pages, 5 figure
Integrated Silicon Photonics for High-Speed Quantum Key Distribution
Integrated photonics offers great potential for quantum communication devices
in terms of complexity, robustness and scalability. Silicon photonics in
particular is a leading platform for quantum photonic technologies, with
further benefits of miniaturisation, cost-effective device manufacture and
compatibility with CMOS microelectronics. However, effective techniques for
high-speed modulation of quantum states in standard silicon photonic platforms
have been limited. Here we overcome this limitation and demonstrate high-speed
low-error quantum key distribution modulation with silicon photonic devices
combining slow thermo-optic DC biases and fast (10~GHz bandwidth)
carrier-depletion modulation. The ability to scale up these integrated circuits
and incorporate microelectronics opens the way to new and advanced integrated
quantum communication technologies and larger adoption of quantum-secured
communications
- …