245 research outputs found

    Empirical plasmapause models from magnetic indices

    Full text link
    We use a database of CRRES in situ observations of plasmapause crossings to build empirical models of the plasmapause location as a function of geomagnetic indices. Previous models used the maximum value in Kp during the hours to days leading up to the plasmapause crossing. We find that a recent maximum in AE or minimum in Dst provides a better model of the plasmapause radius than does maximum Kp. AE and Dst measure specific current systems (the auroral electrojet and ring current, respectively). The AE model suggests that substorms may be involved in the erosion of the plasmapause. The Dst model suggests that ring current may be formed by the same electric field that erodes the plasmapause. In more complex models, Kp and AE can describe local time structure in the plasmapause, with the furthestplasmapausebeforedawnatquiettimes,premidnight at active times.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/165338/1/OBrienMoldwinLpp2003.pdfSEL

    Characteristics of relativistic microburst intensity from SAMPEX observations

    Get PDF
    Relativistic electron microbursts are an important electron loss process from the radiation belts into the atmosphere. These precipitation events have been shown to significantly impact the radiation belt fluxes and atmospheric chemistry. In this study we address a lack of knowledge about the relativistic microburst intensity using measurements of 21,746 microbursts from the Solar Anomalous Magnetospheric Particle Explorer (SAMPEX). We find that the relativistic microburst intensity increases as we move inward in L, with a higher proportion of low‐intensity microbursts (2,250 [MeV cm2 sr s]−1) in the 03–11 magnetic local time region increases as geomagnetic activity increases, consistent with changes in the whistler mode chorus wave activity. Comparisons between relativistic microburst properties and trapped fluxes suggest that the microburst intensities are not limited by the trapped flux present alongside the scattering processes. However, microburst activity appears to correspond to the changing trapped flux; more microbursts occur when the trapped fluxes are enhancing, suggesting that microbursts are linked to processes causing the increased trapped fluxes. Finally, modeling of the impact of a published microburst spectra on a flux tube shows that microbursts are capable of depleting <500‐keV electrons within 1 hr and depleting higher‐energy electrons in 1–23 hr

    Life cycle assessment of pasture-based suckler steer weanling-to-beef production systems: Effect of breed and slaughter age

    Get PDF
    peer-reviewedDemand for beef produced from pasture-based diets is rising as it is perceived to be healthier, animal friendly and good for the environment. Animals reared on a solely grass forage diet, however, have a lower growth rate than cereal-fed animals and consequently are slaughtered at an older age. This study focused on the former by conducting life cycle assessments of beef production systems offering only fresh or conserved grass, and comparing them to a conventional pasture-based beef production system offering concentrate feeding during housing. The four suckler weanling-to-beef production systems simulated were: (i) Steers produced to slaughter entirely on a grass forage diet at 20 months (GO-20); (ii) Steers produced to slaughter entirely on a grass forage diet at 24 months (GO-24); (iii) Steers produced to slaughter on a grass forage diet with concentrate supplementation during housing (GC-24), and (iv) Steers produced to slaughter entirely on a grass forage diet at 28 months (GO-28). Two breed types were evaluated: early-maturing and late-maturing (LM). The environmental impacts assessed were global warming potential (GWP), non-renewable energy (NRE), acidification potential (AP), eutrophication potential (marine (MEP) and freshwater) were expressed per animal, per kg live weight gain (LWG), kg carcass weight gain, and kg meat weight gain (MWG). The GO-20 production system had the lowest environmental impact across all categories and functional units for both breeds. Extending age at slaughter increased environmental impact across all categories per animal. The LWG response of EM steers to concentrate feed supplementation in GC-24 was greater than the increase in total environmental impact resulting in GC-24 having a lower environmental impact across categories per kg product than GO-24. Concentrate feed supplementation had a similar effect on LM steers with the exception of NRE and AP. The increase in daily LWG in the third grazing season in comparison to the second grazing and housing resulted in GO-28 having lower GWP, NRE, AP, and MEP per kg product than GO-24. Early-maturing steers had lower environmental impact than LM when expressed per kg LWG. However the opposite occurred when impacts were expressed per kg MWG, despite LM steers producing the least LWG. The LM steers compensated for poor LWG performance by having superior carcass traits, which caused the breed to have the lowest environmental impact per kg MWG. The results reaffirms the importance of functional unit and suggests reducing the environmental impact of LWG does not always translate into improvements in the environmental performance of meat

    The Response of Earth's Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers

    Get PDF
    A statistical study was conducted of Earth's radiation belt electron response to geomagnetic storms using NASA's Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H 1 MeV also revealed a marked increase in likelihood of a depletion at all L-shells through the outer belt (3.5 1-MeV electrons throughout the outer belt, while storms driven by full CMEs and stream interaction regions are most likely to produce an enhancement of MeV electrons at lower (L similar to 4.5) L-shells, respectively. CME sheaths intriguingly result in a distinct enhancement of similar to 1-MeV electrons around L similar to 5.5, and on average, CME sheaths and stream interaction regions result in double outer belt structures
    corecore