1 research outputs found

    Silicene and transition metal based materials: prediction of a two-dimensional piezomagnet

    No full text
    We use first-principles density functional theory based calculations to determine the stability and properties of silicene, a graphene-like structure made from silicon, and explore the possibilities of modifying its structure and properties through incorporation of transition metal ions (M: Ti, Nb, Ta, Cr, Mo and W) in its lattice, forming MSi2. While pure silicene is stable in a distorted honeycomb lattice structure obtained by opposite out-of-plane displacements of the two Si sub-lattices, its electronic structure still exhibits linear dispersion with the Dirac conical feature similar to graphene. We show that incorporation of transition metal ions in its lattice results in a rich set of properties with a clear dependence on the structural changes, and that CrSi2 forms a two-dimensional magnet exhibiting a strong piezomagnetic coupling
    corecore