4 research outputs found

    Reduced clot strength upon admission, evaluated by thrombelastography (TEG), in trauma patients is independently associated with increased 30-day mortality

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Exsanguination due to uncontrolled bleeding is the leading cause of potentially preventable deaths among trauma patients. About one third of trauma patients present with coagulopathy on admission, which is associated with increased mortality and will aggravate bleeding in a traumatized patient. Thrombelastographic (TEG) clot strength has previously been shown to predict outcome in critically ill patients. The aim of the present study was to investigate this relation in the trauma setting.</p> <p>Methods</p> <p>A retrospective study of trauma patients with an injury severity qualifying them for inclusion in the European Trauma Audit and Research Network (TARN) and a TEG analysis performed upon arrival at the trauma centre.</p> <p>Results</p> <p>Eighty-nine patients were included. The mean Injury Severity Score (ISS) was 21 with a 30-day mortality of 17%. Patients with a reduced clot strength (maximal amplitude < 50 mm) evaluated by TEG, presented with a higher ISS 27 (95% CI, 20-34) vs. 19 (95% CI, 17-22), p = 0.006 than the rest of the cohort. Clot strength correlated with the amount of packed red blood cells (p = 0.01), fresh frozen plasma (p = 0.04) and platelet concentrates (p = 0.03) transfused during the first 24 hours of admission. Patients with low clot strength demonstrated increased 30-day mortality (47% vs. 10%, p < 0.001). By logistic regression analysis reduced clot strength was an independent predictor of increased mortality after adjusting for age and ISS.</p> <p>Conclusion</p> <p>Low clot strength upon admission is independently associated with increased 30-day mortality in trauma patients and it could be speculated that targeted interventions based on the result of the TEG analysis may improve patient outcome. Prospective randomized trials investigating this potential are highly warranted.</p

    Altered brown fat thermoregulation and enhanced cold-induced thermogenesis in young, healthy, winter-swimming men

    No full text
    The Scandinavian winter-swimming culture combines brief dips in cold water with hot sauna sessions, with conceivable effects on body temperature. We study thermogenic brown adipose tissue (BAT) in experienced winter-swimming men performing this activity 2–3 times per week. Our data suggest a lower thermal comfort state in the winter swimmers compared with controls, with a lower core temperature and absence of BAT activity. In response to cold, we observe greater increases in cold-induced thermogenesis and supraclavicular skin temperature in the winter swimmers, whereas BAT glucose uptake and muscle activity increase similarly to those of the controls. All subjects demonstrate nocturnal reduction in supraclavicular skin temperature, whereas a distinct peak occurs at 4:30–5:30 a.m. in the winter swimmers. Our data leverage understanding of BAT in adult human thermoregulation, suggest both heat and cold acclimation in winter swimmers, and propose winter swimming as a potential strategy for increasing energy expenditure
    corecore