15 research outputs found
Chromosome Level Assembly of the Comma Butterfly (Polygonia c-album)
The comma butterfly (Polygonia c-album, Nymphalidae, Lepidoptera) is a model insect species, most notably in the study of phenotypic plasticity and plant-insect coevolutionary interactions. In order to facilitate the integration of genomic tools with a diverse body of ecological and evolutionary research, we assembled the genome of a Swedish comma using 10X sequencing, scaffolding with matepair data, genome polishing, and assignment to linkage groups using a high-density linkage map. The resulting genome is 373 Mb in size, with a scaffold N50 of 11.7 Mb and contig N50 of 11,2Mb. The genome contained 90.1% of single-copy Lepidopteran orthologs in a BUSCO analysis of 5,286 genes. A total of 21,004 gene-models were annotated on the genome using RNA-Seq data from larval and adult tissue in combination with proteins from the Arthropoda database, resulting in a high-quality annotation for which functional annotations were generated. We further documented the quality of the chromosomal assembly via synteny assessment with Melitaea cinxia. The resulting annotated, chromosome-level genome will provide an important resource for investigating coevolutionary dynamics and comparative analyses in Lepidoptera.Peer reviewe
Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies.
The global increase in species richness toward the tropics across continents and taxonomic groups, referred to as the latitudinal diversity gradient, stimulated the formulation of many hypotheses to explain the underlying mechanisms of this pattern. We evaluate several of these hypotheses to explain spatial diversity patterns in a butterfly family, the Nymphalidae, by assessing the contributions of speciation, extinction, and dispersal, and also the extent to which these processes differ among regions at the same latitude. We generate a time-calibrated phylogeny containing 2,866 nymphalid species (~45% of extant diversity). Neither speciation nor extinction rate variations consistently explain the latitudinal diversity gradient among regions because temporal diversification dynamics differ greatly across longitude. The Neotropical diversity results from low extinction rates, not high speciation rates, and biotic interchanges with other regions are rare. Southeast Asia is also characterized by a low speciation rate but, unlike the Neotropics, is the main source of dispersal events through time. Our results suggest that global climate change throughout the Cenozoic, combined with tropical niche conservatism, played a major role in generating the modern latitudinal diversity gradient of nymphalid butterflies
Ontogeny of defense and adaptive coloration in larvae of the comma butterfly, Polygonia c-album (Nymphalidae)
Volume: 55Start Page: 69End Page: 7
Data from: Body size response to warming: time of the season matters in a tephritid fly
Whether shrinking body size is a universal response to climate change remains controversial. Moreover, the mechanisms underlying body size shifts are poorly understood. Here, assuming that life history traits evolve to maximize fitness according to life history plasticity theory, we hypothesized that under global warming temperate multivoltine insects should emerge earlier with a smaller body mass in the early growing season, but emerge later with a larger body mass in the late season. We tested this hypothesis by conducting two field artificial warming experiments in an alpine meadow: 1) with one pre-dispersal seed predator species (tephritid flies, Tephritis femoralis) and its two host-plant species flowering in early and late growing seasons, respectively, and 2) with the tephritid flies and one host species with a flowering season that occupies parts of both the early and late growing seasons. These experiments were complemented by a microcosm chamber warming experiment, in which increasing and decreasing temperature trends were set to simulate temperature variation pattern in early and late growing seasons, respectively, but photoperiod was held constant. Warming generally advanced the adult emergence and decreased the body size (adult body mass) in the early season but delayed the emergence and increased the size in the late season in both field experiments, indicating that the seasonally different effects of warming on the fly body size was constant regardless of host-plant identity. The chamber warming resulted in consistent responses of emerging timing and body size to the simulated seasonal warming, demonstrating that the temperature increase per se and its interaction with direction of temperature change, but not other correlated effects, should be primarily responsible for the observed contrasting shifts of body size at different times of the season. Our results indicate that taking into account temperate seasonal patterns of temperature variation could be of general importance for predicting animal body size changes in the warmed future
Data for the observtional field experiment, controlled field experiment, and the microcosm experiment
Data for the observtional field experiment, controlled field experiment, and the microcosm experimen
Larval transcriptomes reflect the evolutionary history of plant-insect associations
In this study, we investigated whether patterns of gene expression in larvae feeding on different plants can explain important aspects of the evolution of insect-plant associations, such as phylogenetic conservatism of host use and re-colonization of ancestral hosts that have been lost from the host repertoire. To this end, we performed a phylogenetically informed study comparing the transcriptomes of 4 nymphalid butterfly species in Polygonia and the closely related genus Nymphalis. Larvae were reared on Urtica dioica, Salix spp., and Ribes spp. Plant-specific gene expression was found to be similar across butterfly species, even in the case of host plants that are no longer used by two of the butterfly species. These results suggest that plant-specific transcriptomes can be robust over evolutionary time. We propose that adaptations to particular larval food plants can profitably be understood as an evolved set of modules of co-expressed genes, promoting conservatism in host use and facilitating re-colonization. Moreover, we speculate that the degree of overlap between plant-specific transcriptomes may correlate with the strength of trade-offs between plants as resources and hence to the probability of colonizing hosts and complete host shifts
Phylogenetics of Coenonymphina (Nymphalidae: Satyrinae) and the problem of rooting rapid radiations
We report a rapid radiation of a group of butterflies within the family Nymphalidae and examine some aspects of popular analytical methods in dealing with rapid radiations. We attempted to infer the phylogeny of butterflies belonging to the subtribe Coenonymphina sensu lato using five genes (4398 bp) with Maximum Parsimony, Maximum Likelihood and Bayesian analyses. Initial analyses suggested that the group has undergone rapid speciation within Australasia. We further analyzed the dataset with different outgroup combinations the choice of which had a profound effect on relationships within the ingroup. Modelling methods recovered Coenonymphina as a monophyletic group to the exclusion of Zipaetis and Orsotriaena, irrespective of outgroup combination. Maximum Parsimony occasionally returned a polyphyletic Coenonymphina, with Argyronympha grouping with outgroups, but this was strongly dependent on the outgroups used. We analyzed the ingroup without any outgroups and found that the relationships inferred among taxa were different from those inferred when either of the outgroup combinations was used, and this was true for all methods. We also tested whether a hard polytomy is a better hypothesis to explain our dataset, but could not find conclusive evidence. We therefore conclude that the major lineages within Coenonymphina form a near-hard polytomy with regard to each other. The study highlights the importance of testing different outgroups rather than using results from a single outgroup combination of a few taxa, particularly in difficult cases where basal nodes appear to receive low support. We provide a revised classification of Coenonymphina; Zipaetis and Orsotriaena are transferred to the tribe Eritina
Data from: Metabolome dynamics of diapause in the butterfly Pieris napi: distinguishing maintenance, termination and post-diapause phases
Diapause is a deep resting stage facilitating temporal avoidance of unfavourable environmental conditions that is used by many insects to adapt their life cycle to seasonal variation. Although considerable work has been invested in trying to understand each of the major diapause stages (induction, maintenance and termination), we know very little about the transitions between stages, especially diapause termination. Understanding diapause termination is critical for modelling and predicting spring emergence and winter physiology of insects, including many pest insects. In order to gain these insights we investigated metabolome dynamics across diapause development in pupae of the butterfly Pieris napi, which exhibits adaptive latitudinal variation in the length of endogenous diapause that is uniquely well characterized. By employing a time-series experiment we show that the whole-body metabolome is highly dynamic throughout diapause and differs between pupae kept at a diapause-terminating (low), or at a diapause-maintaining (high) temperature. We show major physiological transitions through diapause, separated temperature-dependent from temperature-independent processes and identified significant patterns of metabolite accumulation and degradation. Together the data show that while the general diapause phenotype (suppressed metabolism, increased cold tolerance) is established in a temperature-independent fashion, diapause termination is temperature-dependent and requires a cold signal. This revealed several metabolites that are only accumulated in diapause terminating conditions and degraded in a temperature-unrelated fashion during diapause termination. In conclusion, our findings indicate that some metabolites, in addition to functioning as e.g. cryoprotectants, are candidates for having regulatory roles as metabolic clocks or time-keepers during diapause
Cold tolerance dataset
This excel-file contains two sheets. The first has data on cold shock tolerance and the second has data on supercooling point of Pieris napi pupae undergoing diapause or direct development. Column headers contain descriptions of coding system. See main article for more information
Larval transcriptomes reflect the evolutionary history of plant-insect associations
In this study, we investigated whether patterns of gene expression in larvae feeding on different plants can explain important aspects of the evolution of insect-plant associations, such as phylogenetic conservatism of host use and re-colonization of ancestral hosts that have been lost from the host repertoire. To this end, we performed a phylogenetically informed study comparing the transcriptomes of 4 nymphalid butterfly species in Polygonia and the closely related genus Nymphalis. Larvae were reared on Urtica dioica, Salix spp., and Ribes spp. Plant-specific gene expression was found to be similar across butterfly species, even in the case of host plants that are no longer used by two of the butterfly species. These results suggest that plant-specific transcriptomes can be robust over evolutionary time. We propose that adaptations to particular larval food plants can profitably be understood as an evolved set of modules of co-expressed genes, promoting conservatism in host use and facilitating re-colonization. Moreover, we speculate that the degree of overlap between plant-specific transcriptomes may correlate with the strength of trade-offs between plants as resources and hence to the probability of colonizing hosts and complete host shifts