257 research outputs found
Magnetoresistence engineering and singlet/triplet switching in InAs nanowire quantum dots with ferromagnetic sidegates
We present magnetoresistance (MR) experiments on an InAs nanowire quantum dot
device with two ferromagnetic sidegates (FSGs) in a split-gate geometry. The
wire segment can be electrically tuned to a single dot or to a double dot
regime using the FSGs and a backgate. In both regimes we find a strong MR and a
sharp MR switching of up to 25\% at the field at which the magnetizations of
the FSGs are inverted by the external field. The sign and amplitude of the MR
and the MR switching can both be tuned electrically by the FSGs. In a double
dot regime close to pinch-off we find {\it two} sharp transitions in the
conductance, reminiscent of tunneling MR (TMR) between two ferromagnetic
contacts, with one transition near zero and one at the FSG switching fields.
These surprisingly rich characteristics we explain in several simple resonant
tunneling models. For example, the TMR-like MR can be understood as a
stray-field controlled transition between singlet and a triplet double dot
states. Such local magnetic fields are the key elements in various proposals to
engineer novel states of matter and may be used for testing electron spin-based
Bell inequalities.Comment: 7 pages, 6 figure
Local electrical tuning of the nonlocal signals in a Cooper pair splitter
A Cooper pair splitter consists of a central superconducting contact, S, from
which electrons are injected into two parallel, spatially separated quantum
dots (QDs). This geometry and electron interactions can lead to correlated
electrical currents due to the spatial separation of spin-singlet Cooper pairs
from S. We present experiments on such a device with a series of bottom gates,
which allows for spatially resolved tuning of the tunnel couplings between the
QDs and the electrical contacts and between the QDs. Our main findings are
gate-induced transitions between positive conductance correlation in the QDs
due to Cooper pair splitting and negative correlations due to QD dynamics.
Using a semi-classical rate equation model we show that the experimental
findings are consistent with in-situ electrical tuning of the local and
nonlocal quantum transport processes. In particular, we illustrate how the
competition between Cooper pair splitting and local processes can be optimized
in such hybrid nanostructures.Comment: 9 pages, 6 figures, 2 table
Magnetic field tuning and quantum interference in a Cooper pair splitter
Cooper pair splitting (CPS) is a process in which the electrons of naturally
occurring spin-singlet pairs in a superconductor are spatially separated using
two quantum dots. Here we investigate the evolution of the conductance
correlations in an InAs CPS device in the presence of an external magnetic
field. In our experiments the gate dependence of the signal that depends on
both quantum dots continuously evolves from a slightly asymmetric Lorentzian to
a strongly asymmetric Fano-type resonance with increasing field. These
experiments can be understood in a simple three - site model, which shows that
the nonlocal CPS leads to symmetric line shapes, while the local transport
processes can exhibit an asymmetric shape due to quantum interference. These
findings demonstrate that the electrons from a Cooper pair splitter can
propagate coherently after their emission from the superconductor and how a
magnetic field can be used to optimize the performance of a CPS device. In
addition, the model calculations suggest that the estimate of the CPS
efficiency in the experiments is a lower bound for the actual efficiency.Comment: 5 pages + 4 pages supplementary informatio
Surface-charge-induced freezing of colloidal suspensions
Using grand-canonical Monte Carlo simulations we investigate the impact of
charged walls on the crystallization properties of charged colloidal
suspensions confined between these walls. The investigations are based on an
effective model focussing on the colloids alone. Our results demonstrate that
the fluid-wall interaction stemming from charged walls has a crucial impact on
the fluid's high-density behavior as compared to the case of uncharged walls.
In particular, based on an analysis of in-plane bond order parameters we find
surface-charge-induced freezing and melting transitions
Multi-wall carbon nanotubes as quantum dots
We have measured the differential conductance dI/dV of individual multi-wall
carbon nanotubes (MWNT) of different lengths. A cross-over from wire-like (long
tubes) to dot-like (short tubes) behavior is observed. dI/dV is dominated by
random conductance fluctuations (UCF) in long MWNT devices (L=2...7 ),
while Coulomb blockade and energy level quantization are observed in short ones
(L=300 nm). The electron levels of short MWNT dots are nearly four-fold
degenerate (including spin) and their evolution in magnetic field (Zeeman
splitting) agrees with a g-factor of 2. In zero magnetic field the sequential
filling of states evolves with spin S according to S=0 -> 1/2 -> 0... In
addition, a Kondo enhancement of the conductance is observed when the number of
electrons on the tube is odd.Comment: 10 pages, 4 figure
Nonequilibrium Singlet-Triplet Kondo Effect in Carbon Nanotubes
The Kondo-effect is a many-body phenomenon arising due to conduction
electrons scattering off a localized spin. Coherent spin-flip scattering off
such a quantum impurity correlates the conduction electrons and at low
temperature this leads to a zero-bias conductance anomaly. This has become a
common signature in bias-spectroscopy of single-electron transistors, observed
in GaAs quantum dots as well as in various single-molecule transistors. While
the zero-bias Kondo effect is well established it remains uncertain to what
extent Kondo correlations persist in non-equilibrium situations where inelastic
processes induce decoherence. Here we report on a pronounced conductance peak
observed at finite bias-voltage in a carbon nanotube quantum dot in the spin
singlet ground state. We explain this finite-bias conductance anomaly by a
nonequilibrium Kondo-effect involving excitations into a spin triplet state.
Excellent agreement between calculated and measured nonlinear conductance is
obtained, thus strongly supporting the correlated nature of this nonequilibrium
resonance.Comment: 21 pages, 5 figure
Ground state phase diagram and "parity flipping'' microwave transitions in a gate-tunable Josephson Junction
We probed a gate-tunable InAs nanowire Josephson weak link by coupling it to
a microwave resonator. Tracking the resonator frequency shift when the weak
link is close to pinch-off, we observe that the ground state of the latter
alternates between a singlet and a doublet when varying either the gate voltage
or the superconducting phase difference across it. The corresponding microwave
absorption spectra display lines that approach zero energy close to the
singlet-doublet boundaries, suggesting parity flipping transitions, which are
in principle forbidden in microwave spectroscopy and expected to arise only in
tunnel spectroscopy. We tentatively interpret them by means of an ancillary
state isolated in the junction acting as a reservoir for individual electrons
Signatures of interactions in the Andreev spectrum of nanowire Josephson junctions
We performed microwave spectroscopy of an InAs nanowire between superconducting contacts implementing a finite-length, multichannel Josephson weak link. Certain features in the spectra, such as the splitting by spin-orbit interactions of the transition lines among Andreev states, have been already understood in terms of noninteracting models. However, we identify here additional transitions, which evidence the presence of Coulomb interactions. By combining experimental measurements and model calculations, we reach a qualitative understanding of these very rich Andreev spectr
Epitaxy of Semiconductor-Superconductor nanowires
Controlling the properties of semiconductor/metal interfaces is a powerful
method for designing functionality and improving the performance of electrical
devices. Recently semiconductor/superconductor hybrids have appeared as an
important example where the atomic scale uniformity of the interface plays a
key role for the quality of the induced superconducting gap. Here we present
epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam
epitaxy, a method that provides a conceptually new route to controlled
electrical contacting of nanostructures and for designing devices for
specialized applications such as topological and gate-controlled
superconducting electronics. Our materials of choice, InAs/Al, are grown with
epitaxially matched single plane interfaces, and alternative
semiconductor/metal combinations allowing epitaxial interface matching in
nanowires are discussed. We formulate the grain growth kinetics of the metal
phase in general terms of continuum parameters and bicrystal symmetries. The
method realizes the ultimate limit of uniform interfaces and appears to solve
the soft-gap problem in superconducting hybrid structures.Comment: Combined text and Supplementary Informatio
- …