1,268 research outputs found
Helicity, polarization, and Riemann-Silberstein vortices
Riemann-Silberstein (RS) vortices have been defined as surfaces in spacetime
where the complex form of a free electromagnetic field given by F=E+iB is null
(F.F=0), and they can indeed be interpreted as the collective history swept out
by moving vortex lines of the field. Formally, the nullity condition is similar
to the definition of "C-lines" associated with a monochromatic electric or
magnetic field, which are curves in space where the polarization ellipses
degenerate to circles. However, it was noted that RS vortices of monochromatic
fields generally oscillate at optical frequencies and are therefore
unobservable while electric and magnetic C-lines are steady. Here I show that
under the additional assumption of having definite helicity, RS vortices are
not only steady but they coincide with both sets of C-lines, electric and
magnetic. The two concepts therefore become one for waves of definite frequency
and helicity. Since the definition of RS vortices is relativistically invariant
while that of C-lines is not, it may be useful to regard the vortices as a
wideband generalization of C-lines for waves of definite helicity.Comment: 5 pages, no figures. Submitted to J of Optics A, special issue on
Singular Optics; minor changes from v.
Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry
In this paper a systematic approach to the design of bulk isotropic magnetic
metamaterials is presented. The role of the symmetries of both the constitutive
element and the lattice are analyzed. For this purpose it is assumed that the
metamaterial is composed by cubic SRR resonators, arranged in a cubic lattice.
The minimum symmetries needed to ensure an isotropic behavior are analyzed, and
some particular configurations are proposed. Besides, an equivalent circuit
model is proposed for the considered cubic SRR resonators. Experiments are
carried out in order to validate the proposed theory. We hope that this
analysis will pave the way to the design of bulk metamaterials with strong
isotropic magnetic response, including negative permeability and left-handed
metamaterials.Comment: Submitted to Physical Review B, 23 page
Electronic band structure, Fermi surface, and elastic properties of new 4.2K superconductor SrPtAs from first-principles calculations
The hexagonal phase SrPtAs (s.g. P6/mmm; #194) with a honeycomb lattice
structure very recently was declared as a new low-temperature (TC ~ 4.2K)
superconductor. Here by means of first-principles calculations the optimized
structural parameters, electronic bands, Fermi surface, total and partial
densities of states, inter-atomic bonding picture, independent elastic
constants, bulk and shear moduli for SrPtAs were obtained for the first time
and analyzed in comparison with the related layered superconductor SrPt2As2.Comment: 8 pages, 4 figure
Quantum effects in the evolution of vortices in the electromagnetic field
We analyze the influence of electron-positron pairs creation on the motion of
vortex lines in electromagnetic field. In our approach the electric and
magnetic fields satisfy nonlinear equations derived from the Euler-Heisenberg
effective Lagrangian. We show that these nonlinearities may change the
evolution of vortices.Comment: REVTEX4 and 5 EPS figure
"Random" gentamicin concentrations do not predict trough levels in neonates receiving once daily fixed dose regimens
BACKGROUND: Monitoring plasma gentamicin concentrations in neonates 24 hours after a once daily dose (4 mg/kg) often necessitates additional blood sampling. In adults a nomogram has been developed enabling evaluation of gentamicin doses by sampling concentrations with other blood tests, 4 – 16 hours after administration. We attempted to develop a similar nomogram for neonates. METHODS: In addition to standard 24 hour sampling to monitor trough concentrations, one additional "random" gentamicin concentration was measured in each of 50 neonates <4 days of age (median gestation 33 weeks [28–41]), when other blood samples were clinically necessary, 4 – 20 hours after gentamicin administration. 24 hour concentrations of >1 mg/L were considered high, and an indication to extend the dosing interval. RESULTS: Highest correlation (r(2 )= 0.51) of plasma gentamicin concentration against time (4 to 20 hours) was with logarithmic regression. A line drawn 0.5 mg/L below the true regression line resulted in all babies with 24 hr gentamicin concentrations >1 mg/L having the additional "random" test result above that line, i.e. 100% sensitivity for 24 hour concentrations>1 mg/L, though only 58% specificity. Having created the nomogram, 39 further babies (median gestation 34 weeks [28–41]), were studied and results tested against the nomogram. In this validation group, sensitivity of the nomogram for 24 hr concentrations >1 mg/L was 92%; specificity 14%, positive predictive value 66%, and negative predictive value 50%. Prematurity (≤ 37 weeks) was a more sensitive (94%) and specific (61%) indicator of high 24-hour concentrations. 62 (87%) of 71 preterm babies had high 24-hour concentrations. CONCLUSION: It was not possible to construct a nomogram to predict gentamicin concentrations at 24 hours in neonates with a variety of gestational ages. Dosage tailored to gestation with monitoring of trough concentrations remains management of choice
Propagation of charged particle waves in a uniform magnetic field
This paper considers the probability density and current distributions
generated by a point-like, isotropic source of monoenergetic charges embedded
into a uniform magnetic field environment. Electron sources of this kind have
been realized in recent photodetachment microscopy experiments. Unlike the
total photocurrent cross section, which is largely understood, the spatial
profiles of charge and current emitted by the source display an unexpected
hierarchy of complex patterns, even though the distributions, apart from
scaling, depend only on a single physical parameter. We examine the electron
dynamics both by solving the quantum problem, i. e., finding the energy Green
function, and from a semiclassical perspective based on the simple cyclotron
orbits followed by the electron. Simulations suggest that the semiclassical
method, which involves here interference between an infinite set of paths,
faithfully reproduces the features observed in the quantum solution, even in
extreme circumstances, and lends itself to an interpretation of some (though
not all) of the rich structure exhibited in this simple problem.Comment: 39 pages, 16 figure
Observation of Surface-Avoiding Waves: A New Class of Extended States in Periodic Media
Coherent time-domain optical experiments on GaAs-AlAs superlattices reveal
the exis-tence of an unusually long-lived acoustic mode at ~ 0.6 THz, which
couples weakly to the environment by evading the sample boundaries. Classical
as well as quantum states that steer clear of surfaces are generally shown to
occur in the spectrum of periodic struc-tures, for most boundary conditions.
These surface-avoiding waves are associated with frequencies outside forbidden
gaps and wavevectors in the vicinity of the center and edge of the Brillouin
zone. Possible consequences for surface science and resonant cavity
ap-plications are discussed.Comment: 16 pages, 3 figure
Distribution of nearest distances between nodal points for the Berry function in two dimensions
According to Berry a wave-chaotic state may be viewed as a superposition of
monochromatic plane waves with random phases and amplitudes. Here we consider
the distribution of nodal points associated with this state. Using the property
that both the real and imaginary parts of the wave function are random Gaussian
fields we analyze the correlation function and densities of the nodal points.
Using two approaches (the Poisson and Bernoulli) we derive the distribution of
nearest neighbor separations. Furthermore the distribution functions for nodal
points with specific chirality are found. Comparison is made with results from
from numerical calculations for the Berry wave function.Comment: 11 pages, 7 figure
- …