79 research outputs found

    Interacting vorticity waves as an instability mechanism for magnetohydrodynamic shear instabilities

    Get PDF
    The interacting vorticity wave formalism for shear flow instabilities is extended here to the magnetohydrodynamic (MHD) setting, to provide a mechanistic description for the stabilising and destabilising of shear instabilities by the presence of a background magnetic field. The interpretation relies on local vorticity anomalies inducing a non-local velocity field, resulting in action-at-a-distance. It is shown here that the waves supported by the system are able to propagate vorticity via the Lorentz force, and waves may interact; existence of instability then rests upon whether the choice of basic state allows for phase-locking and constructive interference of the vorticity waves via mutual interaction. To substantiate this claim, we solve the instability problem of two representative basic states, one where a background magnetic field stabilises an unstable flow and the other where the field destabilises a stable flow, and perform relevant analyses to show how this mechanism operates in MHD.Comment: 25 pages, 11 figures, Journal of Fluid Mechanics template, submitted to Journal of Fluid Mechanics; comments welcome (v2: removed the redundant figure files in source zip file so resulting pdf really is 25 pages

    Quasi-Two-Dimensional Dynamics of Plasmas and Fluids

    Get PDF
    In the lowest order of approximation quasi-twa-dimensional dynamics of planetary atmospheres and of plasmas in a magnetic field can be described by a common convective vortex equation, the Charney and Hasegawa-Mirna (CHM) equation. In contrast to the two-dimensional Navier-Stokes equation, the CHM equation admits "shielded vortex solutions" in a homogeneous limit and linear waves ("Rossby waves" in the planetary atmosphere and "drift waves" in plasmas) in the presence of inhomogeneity. Because of these properties, the nonlinear dynamics described by the CHM equation provide rich solutions which involve turbulent, coherent and wave behaviors. Bringing in non ideal effects such as resistivity makes the plasma equation significantly different from the atmospheric equation with such new effects as instability of the drift wave driven by the resistivity and density gradient. The model equation deviates from the CHM equation and becomes coupled with Maxwell equations. This article reviews the linear and nonlinear dynamics of the quasi-two-dimensional aspect of plasmas and planetary atmosphere starting from the introduction of the ideal model equation (CHM equation) and extending into the most recent progress in plasma turbulence.U. S. Department of Energy DE-FG05-80ET-53088Ministry of Education, Science and Culture of JapanFusion Research Cente

    Child and adolescent psychiatric patients and later criminality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sweden has an extensive child and adolescent psychiatric (CAP) research tradition in which longitudinal methods are used to study juvenile delinquency. Up to the 1980s, results from descriptions and follow-ups of cohorts of CAP patients showed that children's behavioural disturbances or disorders and school problems, together with dysfunctional family situations, were the main reasons for families, children, and youth to seek help from CAP units. Such factors were also related to registered criminality and registered alcohol and drug abuse in former CAP patients as adults. This study investigated the risk for patients treated 1975–1990 to be registered as criminals until the end of 2003.</p> <p>Methods</p> <p>A regional sample of 1,400 former CAP patients, whose treatment occurred between 1975 and 1990, was followed to 2003, using database-record links to the Register of Persons Convicted of Offences at the National Council for Crime Prevention (NCCP).</p> <p>Results</p> <p>Every third CAP patient treated between 1975 and 1990 (every second man and every fifth woman) had entered the Register of Persons Convicted of Offences during the observation period, which is a significantly higher rate than the general population.</p> <p>Conclusion</p> <p>Results were compared to published results for CAP patients who were treated between 1953 and 1955 and followed over 20 years. Compared to the group of CAP patients from the 1950s, the results indicate that the risk for boys to enter the register for criminality has doubled and for girls, the risk seems to have increased sevenfold. The reasons for this change are discussed. Although hypothetical and perhaps speculative this higher risk of later criminality may be the result of lack of social control due to (1) rising consumption of alcohol, (2) changes in organisation of child social welfare work, (3) the school system, and (4) CAP methods that were implemented since 1970.</p

    Parametric subharmonic instability of the internal tide at 29°N

    Get PDF
    Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 17–28, doi:10.1175/JPO-D-11-0108.1.Observational evidence is presented for transfer of energy from the internal tide to near-inertial motions near 29°N in the Pacific Ocean. The transfer is accomplished via parametric subharmonic instability (PSI), which involves interaction between a primary wave (the internal tide in this case) and two smaller-scale waves of nearly half the frequency. The internal tide at this location is a complex superposition of a low-mode waves propagating north from Hawaii and higher-mode waves generated at local seamounts, making application of PSI theory challenging. Nevertheless, a statistically significant phase locking is documented between the internal tide and upward- and downward-propagating near-inertial waves. The phase between those three waves is consistent with that expected from PSI theory. Calculated energy transfer rates from the tide to near-inertial motions are modest, consistent with local dissipation rate estimates. The conclusion is that while PSI does befall the tide near a critical latitude of 29°N, it does not do so catastrophically.This work was sponsored by NSF OCE 04-25283.2013-07-0
    corecore