7 research outputs found

    Cardiovascular Effects of Fermented Milk Containing Angiotensin-Converting Enzyme Inhibitors Evaluated in Permanently Catheterized, Spontaneously Hypertensive Rats

    No full text
    In this study, two strains of Lactobacillus helveticus were used to produce fermented milk rich in angiotensin-converting enzyme (ACE) inhibitors. In vitro tests revealed that the two milks contained competitive inhibitors of ACE in amounts comparable to what has been obtained in previously reported studies. The two milks were administered by gavage to spontaneously hypertensive rats that had had a permanent aortic catheter inserted through the left arteria carotis, and mean arterial blood pressure and heart rate were monitored from 4 to 8 h after administration. Unfermented milk and milk fermented with a lactococcal strain that does not produce inhibitors were used as controls. Highly significant blood pressure effects were observed; i.e., milk fermented with the two strains of L. helveticus gave a more pronounced drop in blood pressure than the controls. Significant differences in heart rate effects were detected with one of the strains

    Calcium activity of upper thoracic dorsal root ganglion neurons in zucker diabetic Fatty rats

    Get PDF
    The aim of the present study was to examine the calcium activity of C8-T5 dorsal root ganglion (DRG) neurons from Zucker diabetic fatty rats. In total, 8 diabetic ZDF fatty animals and 8 age-matched control ZDF lean rats were employed in the study. C8-T5 dorsal root ganglia were isolated bilaterally from 14 to 18 weeks old rats, and a primary culture was prepared. Calcium activity was measured ratiometrically using the fluorescent Ca2+-indicator Fura-2 acetoxymethyl ester. All neurons were stimulated twice with 20 mM K+, followed by stimulation with either 0.3 or 0.5 μM Capsaicin, alone or in combination with algogenic chemicals (bradykinin, serotonin, prostaglandin E2 (all 10−5 M), and adenosine (10−3 M)) at pH 7.4 and 6.0. Neurons from diabetic animals exhibited an overall increased response to stimulation with 20 mM K+ compared to neurons from control. Stimulation with Capsaicin alone caused an augmented response in neurons from diabetic animals compared to control animals. When stimulated with a combination of Capsaicin and algogenic chemicals, no differences between the two groups of neurons were measured, neither at pH 7.4 nor 6.0. In conclusion, diabetes-induced alterations in calcium activity of the DRG neurons were found, potentially indicating altered neuronal responses during myocardial ischemia

    Characterization of upper thoracic spinal neurons receiving noxious cardiac and/or somatic inputs in diabetic rats

    No full text
    The aim of the present study was to examine spinal processing of cardiac and somatic nociceptive input in rats with STZ-induced diabetes. Type 1 diabetes was induced with streptozotocin (50 mg/kg) in 14 male Sprague-Dawley rats and citrate buffer was injected in 14 control rats. After 4–11 weeks, the rats were anesthetized with pentobarbital, ventilated and paralyzed. A laminectomy enabled extracellular recording of T(3) spinal cord neuronal activity. Intrapericardial administration of a mixture of algogenic chemicals (bradykinin, serotonin, prostaglandin E(2) (all at 10(−5) M), and adenosine (10(−3) M)) was applied to activate nociceptors of cardiac afferent nerve endings. Furthermore, somatic receptive properties were examined by applying innocuous (brush and light pressure) and noxious (pinch) cutaneous mechanical stimuli. Diabetes-induced increases in spontaneous activity were observed in subsets of neurons exhibiting long-lasting excitatory responses to administration of the algogenic mixture. Algogenic chemicals altered activity of a larger proportion of neurons from diabetic animals (73/111) than control animals (55/115, P < 0.05). Some subtypes of neurons exhibiting long-lasting excitatory responses, elicited prolonged duration and others, had a shortened latency. Some neurons exhibiting short-lasting excitatory responses in diabetic animals elicited a shorter latency and some a decreased excitatory change. The size of the somatic receptive field was increased for cardiosomatic neurons from diabetic animals. Cutaneous somatic mechanical stimulation caused spinal neurons to respond with a mixture of hyper- and hypoexcitability. In conclusion, diabetes induced changes in the spinal processing of cardiac input and these might contribute to cardiovascular autonomic neuropathy in patients with diabetes
    corecore