31 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationThe mature capillary network, comprised of a quiescent endothelial cell monolayer, utilizes tight cell-cell interactions to maintain vascular stability and limit vascular leak. An essential component of these intercellular contacts is the adherens junction protein vascular endothelial cadherin (VE-cadherin). In multiple disease settings such as macular degeneration, sepsis, and pandemic influenza, the endothelium is activated and destabilized by cytokines such as vascular endothelial growth factor (VEGF), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α). While an innate immune response is necessary to combat infection, an exuberant cytokine release can paradoxically injure the host endothelium, resulting in vascular damage, tissue edema, and death. In this dissertation we demonstrate that an endogenous, endothelial-specific Roundabout (Robo), Robo4, maintains vascular stability and quiescence. Administration of Slit, an endogenous activator of Robo receptors, strengthens endothelial barrier function and limits vascular leak in a Robo4-dependent manner. Furthermore, Slit treatment enhanced survival during sepsis and avian flu infection, diseases both characterized by hypercytokinemia. We also discovered that Slit strengthens the vascular barrier by increasing VE-cadherin localization at the cell surface. Slit also increases p120-catenin localization at the cell surface and enhances the interaction of p120-catenin with VE-cadherin, preventing the internalization of VE-cadherin. Furthermore, Robo4 activation leads to the recruitment of a paxillin-GIT1 signaling module that inactivates Arf6. Arf6 plays a known role in regulating endocytic recycling, thus perhaps defining Robo4-dependent Slit signaling as a paxillin-GIT1-Arf6-p120-catenin-VE-cadherin stabilization pathway. Our studies fundamentally demonstrate that by specifically blunting the vascular response to hypercytokinemia, mortality can be reduced during severe experimental infections. Activation of a vascular stabilizing pathway such as Robo4 may therefore provide a platform for treating multiple infectious threats characterized by an exuberant cytokine response

    Assessing changes in vascular permeability in a hamster model of viral hemorrhagic fever

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A number of RNA viruses cause viral hemorrhagic fever (VHF), in which proinflammatory mediators released from infected cells induce increased permeability of the endothelial lining of blood vessels, leading to loss of plasma volume, hypotension, multi-organ failure, shock and death. The optimal treatment of VHF should therefore include both the use of antiviral drugs to inhibit viral replication and measures to prevent or correct changes in vascular function. Although rodent models have been used to evaluate treatments for increased vascular permeability (VP) in bacterial sepsis, such studies have not been performed for VHF.</p> <p>Results</p> <p>Here, we use an established model of Pichinde virus infection of hamsters to demonstrate how changes in VP can be detected by intravenous infusion of Evans blue dye (EBD), and compare those measurements to changes in hematocrit, serum albumin concentration and serum levels of proinflammatory mediators. We show that EBD injected into sick animals in the late stage of infection is rapidly sequestered in the viscera, while in healthy animals it remains within the plasma, causing the skin to turn a marked blue color. This test could be used in live animals to detect increased VP and to assess the ability of antiviral drugs and vasoactive compounds to prevent its onset. Finally, we describe a multiplexed assay to measure levels of serum factors during the course of Pichinde arenavirus infection and demonstrate that viremia and subsequent increase in white blood cell counts precede the elaboration of inflammatory mediators, which is followed by increased VP and death.</p> <p>Conclusions</p> <p>This level of model characterization is essential to the evaluation of novel interventions designed to control the effects of virus-induced hypercytokinemia on host vascular function in VHF, which could lead to improved survival.</p

    In silico analysis of pathways activation landscape in oral squamous cell carcinoma and oral leukoplakia.

    Get PDF
    A subset of patients with oral squamous cell carcinoma (OSCC), the most common subtype of head and neck squamous cell carcinoma (HNSCC), harbor dysplastic lesions (often visually identified as leukoplakia) prior to cancer diagnosis. Although evidence suggest that leukoplakia represents an initial step in the progression to cancer, signaling networks driving this progression are poorly understood. Here, we applied in silico Pathway Activation Network Decomposition Analysis (iPANDA), a new bioinformatics software suite for qualitative analysis of intracellular signaling pathway activation using transcriptomic data, to assess a network of molecular signaling in OSCC and pre-neoplastic oral lesions. In tumor samples, our analysis detected major conserved mitogenic and survival signaling pathways strongly associated with HNSCC, suggesting that some of the pathways identified by our algorithm, but not yet validated as HNSCC related, may be attractive targets for future research. While pathways activation landscape in the majority of leukoplakias was different from that seen in OSCC, a subset of pre-neoplastic lesions has demonstrated some degree of similarity to the signaling profile seen in tumors, including dysregulation of the cancer-driving pathways related to survival and apoptosis. These results suggest that dysregulation of these signaling networks may be the driving force behind the early stages of OSCC tumorigenesis. While future studies with larger leukoplakia data sets are warranted to further estimate the values of this approach for capturing signaling features that characterize relevant lesions that actually progress to cancers, our platform proposes a promising new approach for detecting cancer-promoting pathways and tailoring the right therapy to prevent tumorigenesis

    Slit2–Robo4 signalling promotes vascular stability by blocking Arf6 activity

    Get PDF
    Slit–Roundabout (Robo) signalling has a well-understood role in axon guidance1–5. Unlike in the nervous system, however, Slitdependent activation of an endothelial-specific Robo, Robo4, does not initiate a guidance program. Instead, Robo4 maintains the barrier function of the mature vascular network by inhibiting neovascular tuft formation and endothelial hyperpermeability induced by pro-angiogenic factors 6. In this study, we used cell biological and biochemical techniques to elucidate the molecular mechanism underlying the maintenance of vascular stability by Robo4. Here, we demonstrate that Robo4 mediates Slit2-dependent suppression of cellular protrusive activity through direct interaction with the intracellular adaptor protein paxillin and its paralogue, Hic-5. Formation of a Robo4–paxillin complex at the cell surface blocks activation of the small GTPase Arf6 and, consequently, Rac by recruitment of Arf-GAPs (ADP-ribosylation factor- directed GTPase-activating proteins) such as GIT1. Consistent with these in vitro studies, inhibition of Arf6 activity in vivo phenocopies Robo4 activation by reducing pathologic angiogenesis in choroidal and retinal vascular disease and VEGF-165 (vascular endothelial growth factor-165)-induced retinal hyperpermeability. These data reveal that a Slit2–Robo4–paxillin–GIT1 network inhibits the cellular protrusive activity underlying neovascularization and vascular leak, and identify a new therapeutic target for ameliorating diseases involving the vascular system

    PDGF-C Induces Maturation of Blood Vessels in a Model of Glioblastoma and Attenuates the Response to Anti-VEGF Treatment

    Get PDF
    Recent clinical trials of VEGF inhibitors have shown promise in the treatment of recurrent glioblastomas (GBM). However, the survival benefit is usually short-lived as tumors escape anti-VEGF therapies. Here we tested the hypothesis that Platelet Derived Growth Factor-C (PDGF-C), an isoform of the PDGF family, affects GBM progression independent of VEGF pathway and hinders anti-VEGF therapy.We first showed that PDGF-C is present in human GBMs. Then, we overexpressed or downregulated PDGF-C in a human GBM cell line, U87MG, and grew them in cranial windows in nude mice to assess vessel structure and function using intravital microscopy. PDGF-C overexpressing tumors had smaller vessel diameters and lower vascular permeability compared to the parental or siRNA-transfected tumors. Furthermore, vessels in PDGF-C overexpressing tumors had more extensive coverage with NG2 positive perivascular cells and a thicker collagen IV basement membrane than the controls. Treatment with DC101, an anti-VEGFR-2 antibody, induced decreases in vessel density in the parental tumors, but had no effect on the PDGF-C overexpressing tumors.These results suggest that PDGF-C plays an important role in glioma vessel maturation and stabilization, and that it can attenuate the response to anti-VEGF therapy, potentially contributing to escape from vascular normalization

    Aeroallergens, air pollutants, and chronic rhinitis and rhinosinusitis

    No full text
    Chronic rhinitis and rhinosinusitis are among the most common conditions worldwide with significant morbidity and decreased quality of life. Although the pathogenesis of these conditions is multifactorial, there has been increasing evidence for the role of environmental factors such as aeroallergens and air pollutants as initiating or exacerbating factors. This review will outline the current literature focusing on the role of aeroallergens and air pollution in the pathogenesis of chronic sinonasal inflammatory conditions. Keywords: Aeroallergens, Air pollutants, Inflammatory cytokines, Innate immunity, Particulate matter, Rhiniti

    Organoid and Spheroid Tumor Models: Techniques and Applications

    No full text
    Techniques to develop three-dimensional cell culture models are rapidly expanding to bridge the gap between conventional cell culture and animal models. Organoid and spheroid cultures have distinct and overlapping purposes and differ in cellular sources and protocol for establishment. Spheroids are of lower complexity structurally but are simple and popular models for drug screening. Organoids histologically and genetically resemble the original tumor from which they were derived. Ease of generation, ability for long-term culture and cryopreservation make organoids suitable for a wide range of applications. Organoids-on-chip models combine organoid methods with powerful designing and fabrication of micro-chip technology. Organoid-chip models can emulate the dynamic microenvironment of tumor pathophysiology as well as tissue–tissue interactions. In this review, we outline different tumor spheroid and organoid models and techniques to establish them. We also discuss the recent advances and applications of tumor organoids with an emphasis on tumor modeling, drug screening, personalized medicine and immunotherapy
    corecore