5 research outputs found

    A second large plasmid encodes conjugative transfer and antimicrobial resistance in O119:H2 and some typical O111 enteropathogenic \u3ci\u3eEscherichia coli\u3c/i\u3e strains

    Get PDF
    A novel and functional conjugative transfer system identified in O119:H2 enteropathogenic Escherichia coli (EPEC) strain MB80 by subtractive hybridization is encoded on a large multidrug resistance plasmid, distinct from the well-described EPEC adherence factor (EAF) plasmid. Variants of the MB80 conjugative resistance plasmid were identified in other EPEC strains, including the prototypical O111:NM strain B171, from which the EAF plasmid has been sequenced. This separate large plasmid and the selective advantage that it confers in the antibiotic era have been overlooked because it comigrates with the virulence plasmid on conventional gels

    A Second Large Plasmid Encodes Conjugative Transfer and Antimicrobial Resistance in O119:H2 and Some Typical O111 Enteropathogenic Escherichia coli Strains▿ §

    No full text
    A novel and functional conjugative transfer system identified in O119:H2 enteropathogenic Escherichia coli (EPEC) strain MB80 by subtractive hybridization is encoded on a large multidrug resistance plasmid, distinct from the well-described EPEC adherence factor (EAF) plasmid. Variants of the MB80 conjugative resistance plasmid were identified in other EPEC strains, including the prototypical O111:NM strain B171, from which the EAF plasmid has been sequenced. This separate large plasmid and the selective advantage that it confers in the antibiotic era have been overlooked because it comigrates with the virulence plasmid on conventional gels
    corecore