2 research outputs found
A Review on Isolation, Characterization, Modification, and Applications of Proso Millet Starch
Proso millet starch (PMS) as an unconventional and underutilized millet starch is becoming increasingly popular worldwide due to its health-promoting properties. This review summarizes research progress in the isolation, characterization, modification, and applications of PMS. PMS can be isolated from proso millet grains by acidic, alkaline, or enzymatic extraction. PMS exhibits typical A-type polymorphic diffraction patterns and shows polygonal and spherical granular structures with a granule size of 0.3–17 µm. PMS is modified by chemical, physical, and biological methods. The native and modified PMS are analyzed for swelling power, solubility, pasting properties, thermal properties, retrogradation, freeze–thaw stability, and in vitro digestibility. The improved physicochemical, structural, and functional properties and digestibility of modified PMS are discussed in terms of their suitability for specific applications. The potential applications of native and modified PMS in food and nonfood products are presented. Future prospects for research and commercial use of PMS in the food industry are also highlighted
Improved polarized light microscopic detection of gouty crystals via dissolution with formalin and ethylenediamine tetraacetic acid
Abstract Conventional polarized light microscopy has been widely used to detect gouty crystals, but its limited sensitivity increases the risk of misidentification. In this study, a number of methods were investigated to improve the sensitivity of polarized light microscopy for the detection of monosodium urate monohydrate (MSUM) and calcium pyrophosphate dihydrate (CPPD) crystals. We found that coating glass slides with poly-L-lysine, a positively charged polymer, improved the attachment of crystals to the glass surface, resulting in clearer crystal images compared to non-coated slides. Additionally, the sensitivity of detection was further enhanced by selective dissolution, in which 40% v/v formalin phosphate buffer was employed to dissolve MSUM crystals but not CPPD while 10% ethylenediamine tetraacetic acid (EDTA) was employed to dissolved CPPD but not MSUM. The other possible interferences were dissolved in both EDTA and formalin solution. These methods were successfully applied to detect gouty crystals in biological milieu, including spiked porcine synovial fluid and inflamed rat subcutaneous air pouch tissues