7 research outputs found

    Role of the N-methyl-d-aspartate receptors complex in amyotrophic lateral sclerosis

    Get PDF
    AbstractAmyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease pathologically characterized by the massive loss of motor neurons in the spinal cord, brain stem and cerebral cortex. There is a consensus in the field that ALS is a multifactorial pathology and a number of possible mechanisms have been suggested. Among the proposed hypothesis, glutamate toxicity has been one of the most investigated. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor mediated cell death and impairment of the glutamate-transport system have been suggested to play a central role in the glutamate-mediated motor neuron degeneration. In this context, the role played by the N-methyl-d-aspartate (NMDA) receptor has received considerable less attention notwithstanding its high Ca2+ permeability, expression in motor neurons and its importance in excitotoxicity. This review overviews the critical role of NMDA-mediated toxicity in ALS, with a particular emphasis on the endogenous modulators of the NMDAR

    Platelet activation in obese women: role of inflammation and oxidant stress

    Full text link
    Abstract BACKGROUND: To investigate early events possibly related to the development of diabetic angiopathy, we examined whether 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha) formation, a marker of in vivo oxidant stress, is altered in different stages of type 1 diabetes (T1DM) and whether it correlates with the rate of thromboxane (TX) A2 biosynthesis, a marker of in vivo platelet activation. We also investigated the relationship between inflammatory markers and F2-isoprostane formation in this setting. METHODS AND RESULTS: A cross-sectional study was performed in 23 insulin-treated patients aged 1 year, group B). Urinary 8-iso-PGF2alpha and 11-dehydro-TXB2 were measured in all patients and in age- and gender-matched controls. Circulating interleukin-6 (IL-6), tumor necrosis factor-alpha, and C-reactive protein were also determined as markers of the inflammatory response. Fifteen of the 23 children in group A were reexamined after 12 months. Compared with either controls or group B, diabetic children in group A showed significantly higher levels of 8-iso-PGF2alpha, 11-dehydro-TXB2, IL-6, tumor necrosis factor-alpha, and C-reactive protein. Statistically significant correlations between IL-6 and both 8-iso-PGF2alpha (r=0.63, P<0.001) and 11-dehydro-TXB2 (r=0.51, P<0.01) were observed. The 15 patients reexamined after 1 year showed a significant reduction in lipid peroxidation and platelet activation (P<0.02 and P<0.001, respectively), consistent with reduced levels of IL-6 and tumor necrosis factor-alpha. CONCLUSIONS: These results demonstrate that enhanced lipid peroxidation and platelet activation represent early events in T1DM that are possibly related to an acute inflammatory response. These noninvasive indexes may help in further examining T1DM pathophysiology and monitoring pharmacological interventions to interfere with disease development and progression

    Platelet activation in obese women: role of inflammation and oxidant stress

    Full text link
    Abstract BACKGROUND: To investigate early events possibly related to the development of diabetic angiopathy, we examined whether 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha) formation, a marker of in vivo oxidant stress, is altered in different stages of type 1 diabetes (T1DM) and whether it correlates with the rate of thromboxane (TX) A2 biosynthesis, a marker of in vivo platelet activation. We also investigated the relationship between inflammatory markers and F2-isoprostane formation in this setting. METHODS AND RESULTS: A cross-sectional study was performed in 23 insulin-treated patients aged 1 year, group B). Urinary 8-iso-PGF2alpha and 11-dehydro-TXB2 were measured in all patients and in age- and gender-matched controls. Circulating interleukin-6 (IL-6), tumor necrosis factor-alpha, and C-reactive protein were also determined as markers of the inflammatory response. Fifteen of the 23 children in group A were reexamined after 12 months. Compared with either controls or group B, diabetic children in group A showed significantly higher levels of 8-iso-PGF2alpha, 11-dehydro-TXB2, IL-6, tumor necrosis factor-alpha, and C-reactive protein. Statistically significant correlations between IL-6 and both 8-iso-PGF2alpha (r=0.63, P<0.001) and 11-dehydro-TXB2 (r=0.51, P<0.01) were observed. The 15 patients reexamined after 1 year showed a significant reduction in lipid peroxidation and platelet activation (P<0.02 and P<0.001, respectively), consistent with reduced levels of IL-6 and tumor necrosis factor-alpha. CONCLUSIONS: These results demonstrate that enhanced lipid peroxidation and platelet activation represent early events in T1DM that are possibly related to an acute inflammatory response. These noninvasive indexes may help in further examining T1DM pathophysiology and monitoring pharmacological interventions to interfere with disease development and progression

    Impaired terminal differentiation of hippocampal granule neurons and defective contextual memory in PC3/Tis21 knockout mice.

    Get PDF
    Neurogenesis in the dentate gyrus of the adult hippocampus has been implicated in neural plasticity and memory, but the molecular mechanisms controlling the proliferation and differentiation of newborn neurons and their integration into the synaptic circuitry are still largely unknown. To investigate this issue, we have analyzed the adult hippocampal neurogenesis in a PC3/Tis21-null mouse model. PC3/Tis21 is a transcriptional co-factor endowed with antiproliferative and prodifferentiative properties; indeed, its upregulation in neural progenitors has been shown to induce exit from cell cycle and differentiation. We demonstrate here that the deletion of PC3/Tis21 causes an increased proliferation of progenitor cells in the adult dentate gyrus and an arrest of their terminal differentiation. In fact, in the PC3/Tis21-null hippocampus postmitotic undifferentiated neurons accumulated, while the number of terminally differentiated neurons decreased of 40%. As a result, PC3/Tis21-null mice displayed a deficit of contextual memory. Notably, we observed that PC3/Tis21 can associate to the promoter of Id3, an inhibitor of proneural gene activity, and negatively regulates its expression, indicating that PC3/Tis21 acts upstream of Id3. Our results identify PC3/Tis21 as a gene required in the control of proliferation and terminal differentiation of newborn neurons during adult hippocampal neurogenesis and suggest its involvement in the formation of contextual memories
    corecore