322 research outputs found
S-matrix poles and the second virial coefficient
For cutoff potentials, a condition which is not a limitation for the
calculation of physical systems, the S-matrix is meromorphic. We can express it
in terms of its poles, and then calculate the quantum mechanical second virial
coefficient of a neutral gas.
Here, we take another look at this approach, and discuss the feasibility,
attraction and problems of the method. Among concerns are the rate of
convergence of the 'pole' expansion and the physical significance of the
'higher' poles.Comment: 20 pages, 8 tables, submitted to J. Mol. Phy
Theory of Optical Tweezers
We derive a partial-wave (Mie) expansion of the axial force exerted on a
transparent sphere by a laser beam focused through a high numerical aperture
objective. The results hold throughout the range of interest for practical
applications. The ray optics limit is shown to follow from the Mie expansion by
size averaging. Numerical plots show large deviations from ray optics near the
focal region and oscillatory behavior (explained in terms of a simple
interferometer picture) of the force as a function of the size parameter.
Available experimental data favor the present model over previous ones.Comment: 4 pages, 3 figure
Large time behavior for vortex evolution in the half-plane
In this article we study the long-time behavior of incompressible ideal flow
in a half plane from the point of view of vortex scattering. Our main result is
that certain asymptotic states for half-plane vortex dynamics decompose
naturally into a nonlinear superposition of soliton-like states. Our approach
is to combine techniques developed in the study of vortex confinement with weak
convergence tools in order to study the asymptotic behavior of a self-similar
rescaling of a solution of the incompressible 2D Euler equations on a half
plane with compactly supported, nonnegative initial vorticity.Comment: 30 pages, no figure
- …