9 research outputs found

    Spin Model for Inverse Melting and Inverse Glass Transition

    Full text link
    A spin model that displays inverse melting and inverse glass transition is presented and analyzed. Strong degeneracy of the interacting states of an individual spin leads to entropic preference of the "ferromagnetic" phase, while lower energy associated with the non-interacting states yields a "paramagnetic" phase as temperature decreases. An infinite range model is solved analytically for constant paramagnetic exchange interaction, while for its random exchange, analogous results based on the replica symmetric solution are presented. The qualitative features of this model are shown to resemble a large class of inverse melting phenomena. First and second order transition regimes are identified

    Mechanical Properties of Glass Forming Systems

    Full text link
    We address the interesting temperature range of a glass forming system where the mechanical properties are intermediate between those of a liquid and a solid. We employ an efficient Monte-Carlo method to calculate the elastic moduli, and show that in this range of temperatures the moduli are finite for short times and vanish for long times, where `short' and `long' depend on the temperature. By invoking some exact results from statistical mechanics we offer an alternative method to compute shear moduli using Molecular Dynamics simulations, and compare those to the Monte-Carlo method. The final conclusion is that these systems are not "viscous fluids" in the usual sense, as their actual time-dependence concatenates solid-like materials with varying local shear moduli

    Ageing and Relaxation in Glass Forming Systems

    Full text link
    We propose that there exists a generic class of glass forming systems that have competing states (of crystalline order or not) which are locally close in energy to the ground state (which is typically unique). Upon cooling, such systems exhibit patches (or clusters) of these competing states which become locally stable in the sense of having a relatively high local shear modulus. It is in between these clusters where ageing, relaxation and plasticity under strain can take place. We demonstrate explicitly that relaxation events that lead to ageing occur where the local shear modulus is low (even negative), and result in an increase in the size of local patches of relative order. We examine the ageing events closely from two points of view. On the one hand we show that they are very localized in real space, taking place outside the patches of relative order, and from the other point of view we show that they represent transitions from one local minimum in the potential surface to another. This picture offers a direct relation between structure and dynamics, ascribing the slowing down in glass forming systems to the reduction in relative volume of the amorphous material which is liquid-like. While we agree with the well known Adam-Gibbs proposition that the slowing down is due to an entropic squeeze (a dramatic decrease in the number of available configurations), we do not agree with the Adam-Gibbs (or the Volger-Fulcher) formulae that predict an infinite relaxation time at a finite temperature. Rather, we propose that generically there should be no singular crisis at any finite temperature: the relaxation time and the associated correlation length (average cluster size) increase at most super-exponentially when the temperature is lowered
    corecore